# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trainer for U2 model.""" import cProfile import os from paddle import distributed as dist from yacs.config import CfgNode from deepspeech.training.cli import default_argument_parser from deepspeech.utils.dynamic_import import dynamic_import from deepspeech.utils.utility import print_arguments model_alias = { "u2": "deepspeech.exps.u2.model:U2Trainer", "u2_kaldi": "deepspeech.exps.u2_kaldi.model:U2Trainer", } def main_sp(config, args): class_obj = dynamic_import(args.model_name, model_alias) exp = class_obj(config, args) exp.setup() exp.run() def main(config, args): if args.device == "gpu" and args.nprocs > 1: dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs) else: main_sp(config, args) if __name__ == "__main__": parser = default_argument_parser() parser.add_argument( '--model-name', type=str, default='u2_kaldi', help='model name, e.g: deepspeech2, u2, u2_kaldi, u2_st') args = parser.parse_args() print_arguments(args, globals()) config = CfgNode() config.set_new_allowed(True) config.merge_from_file(args.config) if args.opts: config.merge_from_list(args.opts) config.freeze() print(config) if args.dump_config: with open(args.dump_config, 'w') as f: print(config, file=f) # Setting for profiling pr = cProfile.Profile() pr.runcall(main, config, args) pr.dump_stats(os.path.join(args.output, 'train.profile'))