# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import shutil import jsonlines import numpy as np import paddle import yaml from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from parakeet.datasets.data_table import DataTable from parakeet.datasets.am_batch_fn import fastspeech2_single_spk_batch_fn from parakeet.datasets.am_batch_fn import fastspeech2_multi_spk_batch_fn from parakeet.models.fastspeech2 import FastSpeech2 from parakeet.models.fastspeech2 import FastSpeech2Evaluator from parakeet.models.fastspeech2 import FastSpeech2Updater from parakeet.training.extensions.snapshot import Snapshot from parakeet.training.extensions.visualizer import VisualDL from parakeet.training.optimizer import build_optimizers from parakeet.training.seeding import seed_everything from parakeet.training.trainer import Trainer from pathlib import Path from visualdl import LogWriter from yacs.config import CfgNode def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly if not paddle.is_compiled_with_cuda(): paddle.set_device("cpu") else: paddle.set_device("gpu") world_size = paddle.distributed.get_world_size() if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) fields = [ "text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy" ] if args.speaker_dict is not None: print("multiple speaker fastspeech2!") collate_fn = fastspeech2_multi_spk_batch_fn with open(args.speaker_dict, 'rt') as f: spk_id = [line.strip().split() for line in f.readlines()] num_speakers = len(spk_id) fields += ["spk_id"] else: print("single speaker fastspeech2!") collate_fn = fastspeech2_single_spk_batch_fn num_speakers = None print("num_speakers:", num_speakers) # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) train_dataset = DataTable( data=train_metadata, fields=fields, converters={"speech": np.load, "pitch": np.load, "energy": np.load}, ) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) dev_dataset = DataTable( data=dev_metadata, fields=fields, converters={"speech": np.load, "pitch": np.load, "energy": np.load}, ) # collate function and dataloader train_sampler = DistributedBatchSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) print("samplers done!") train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, shuffle=False, drop_last=False, batch_size=config.batch_size, collate_fn=collate_fn, num_workers=config.num_workers) print("dataloaders done!") with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) odim = config.n_mels model = FastSpeech2( idim=vocab_size, odim=odim, num_speakers=num_speakers, **config["model"]) if world_size > 1: model = DataParallel(model) print("model done!") optimizer = build_optimizers(model, **config["optimizer"]) print("optimizer done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = FastSpeech2Updater( model=model, optimizer=optimizer, dataloader=train_dataloader, output_dir=output_dir, **config["updater"]) trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir) evaluator = FastSpeech2Evaluator( model, dev_dataloader, output_dir=output_dir, **config["updater"]) if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) writer = LogWriter(str(output_dir)) trainer.extend(VisualDL(writer), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) # print(trainer.extensions) trainer.run() def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser(description="Train a FastSpeech2 model.") parser.add_argument("--config", type=str, help="fastspeech2 config file.") parser.add_argument("--train-metadata", type=str, help="training data.") parser.add_argument("--dev-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--device", type=str, default="gpu", help="device type to use.") parser.add_argument( "--nprocs", type=int, default=1, help="number of processes.") parser.add_argument("--verbose", type=int, default=1, help="verbose.") parser.add_argument( "--phones-dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--speaker-dict", type=str, default=None, help="speaker id map file for multiple speaker model.") args = parser.parse_args() if args.device == "cpu" and args.nprocs > 1: raise RuntimeError("Multiprocess training on CPU is not supported.") with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) # dispatch if args.nprocs > 1: dist.spawn(train_sp, (args, config), nprocs=args.nprocs) else: train_sp(args, config) if __name__ == "__main__": main()