# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import paddle from dataset.voxceleb.voxceleb1 import VoxCeleb1 def main(args): paddle.set_device(args.device) # stage1: we must call the paddle.distributed.init_parallel_env() api at the begining paddle.distributed.init_parallel_env() nranks = paddle.distributed.get_world_size() local_rank = paddle.distributed.get_rank() # stage2: data prepare train_ds = VoxCeleb1('train', target_dir=args.data_dir) if __name__ == "__main__": # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument('--device', choices=['cpu', 'gpu'], default="cpu", help="Select which device to train model, defaults to gpu.") parser.add_argument("--data-dir", default="./data/", type=str, help="data directory") args = parser.parse_args() # yapf: enable main(args)