# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from concurrent.futures import ThreadPoolExecutor from operator import itemgetter from pathlib import Path from typing import Any from typing import Dict from typing import List import jsonlines import librosa import numpy as np import tqdm import yaml from yacs.config import CfgNode from paddlespeech.t2s.datasets.get_feats import Energy from paddlespeech.t2s.datasets.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import Pitch from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length from paddlespeech.t2s.datasets.preprocess_utils import get_input_token from paddlespeech.t2s.datasets.preprocess_utils import get_sentences_svs from paddlespeech.t2s.datasets.preprocess_utils import get_spk_id_map from paddlespeech.t2s.utils import str2bool ALL_INITIALS = [ 'zh', 'ch', 'sh', 'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'j', 'q', 'x', 'r', 'z', 'c', 's', 'y', 'w' ] ALL_FINALS = [ 'a', 'ai', 'an', 'ang', 'ao', 'e', 'ei', 'en', 'eng', 'er', 'i', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'iu', 'ng', 'o', 'ong', 'ou', 'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn' ] def process_sentence( config: Dict[str, Any], fp: Path, sentences: Dict, output_dir: Path, mel_extractor=None, pitch_extractor=None, energy_extractor=None, cut_sil: bool=True, spk_emb_dir: Path=None, ): utt_id = fp.stem record = None if utt_id in sentences: # reading, resampling may occur wav, _ = librosa.load(str(fp), sr=config.fs) if len(wav.shape) != 1: return record max_value = np.abs(wav).max() if max_value > 1.0: wav = wav / max_value assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio." assert np.abs(wav).max( ) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM." phones = sentences[utt_id][0] durations = sentences[utt_id][1] note = sentences[utt_id][2] note_dur = sentences[utt_id][3] is_slur = sentences[utt_id][4] speaker = sentences[utt_id][-1] # extract mel feats logmel = mel_extractor.get_log_mel_fbank(wav) # change duration according to mel_length compare_duration_and_mel_length(sentences, utt_id, logmel) # utt_id may be popped in compare_duration_and_mel_length if utt_id not in sentences: return None phones = sentences[utt_id][0] durations = sentences[utt_id][1] num_frames = logmel.shape[0] assert sum( durations ) == num_frames, "the sum of durations doesn't equal to the num of mel frames. " speech_dir = output_dir / "data_speech" speech_dir.mkdir(parents=True, exist_ok=True) speech_path = speech_dir / (utt_id + "_speech.npy") np.save(speech_path, logmel) # extract pitch and energy pitch = pitch_extractor.get_pitch(wav) assert pitch.shape[0] == num_frames pitch_dir = output_dir / "data_pitch" pitch_dir.mkdir(parents=True, exist_ok=True) pitch_path = pitch_dir / (utt_id + "_pitch.npy") np.save(pitch_path, pitch) energy = energy_extractor.get_energy(wav) assert energy.shape[0] == num_frames energy_dir = output_dir / "data_energy" energy_dir.mkdir(parents=True, exist_ok=True) energy_path = energy_dir / (utt_id + "_energy.npy") np.save(energy_path, energy) record = { "utt_id": utt_id, "phones": phones, "text_lengths": len(phones), "speech_lengths": num_frames, "durations": durations, "speech": str(speech_path), "pitch": str(pitch_path), "energy": str(energy_path), "speaker": speaker, "note": note, "note_dur": note_dur, "is_slur": is_slur, } if spk_emb_dir: if speaker in os.listdir(spk_emb_dir): embed_name = utt_id + ".npy" embed_path = spk_emb_dir / speaker / embed_name if embed_path.is_file(): record["spk_emb"] = str(embed_path) else: return None return record def process_sentences( config, fps: List[Path], sentences: Dict, output_dir: Path, mel_extractor=None, pitch_extractor=None, energy_extractor=None, nprocs: int=1, cut_sil: bool=True, spk_emb_dir: Path=None, write_metadata_method: str='w', ): if nprocs == 1: results = [] for fp in tqdm.tqdm(fps, total=len(fps)): record = process_sentence( config=config, fp=fp, sentences=sentences, output_dir=output_dir, mel_extractor=mel_extractor, pitch_extractor=pitch_extractor, energy_extractor=energy_extractor, cut_sil=cut_sil, spk_emb_dir=spk_emb_dir, ) if record: results.append(record) else: with ThreadPoolExecutor(nprocs) as pool: futures = [] with tqdm.tqdm(total=len(fps)) as progress: for fp in fps: future = pool.submit( process_sentence, config, fp, sentences, output_dir, mel_extractor, pitch_extractor, energy_extractor, cut_sil, spk_emb_dir, ) future.add_done_callback(lambda p: progress.update()) futures.append(future) results = [] for ft in futures: record = ft.result() if record: results.append(record) results.sort(key=itemgetter("utt_id")) with jsonlines.open(output_dir / "metadata.jsonl", write_metadata_method) as writer: for item in results: writer.write(item) print("Done") def main(): # parse config and args parser = argparse.ArgumentParser( description="Preprocess audio and then extract features.") parser.add_argument( "--dataset", default="opencpop", type=str, help="name of dataset, should in {opencpop} now") parser.add_argument( "--rootdir", default=None, type=str, help="directory to dataset.") parser.add_argument( "--dumpdir", type=str, required=True, help="directory to dump feature files.") parser.add_argument( "--label-file", default=None, type=str, help="path to label file.") parser.add_argument("--config", type=str, help="diffsinger config file.") parser.add_argument( "--num-cpu", type=int, default=1, help="number of process.") parser.add_argument( "--cut-sil", type=str2bool, default=True, help="whether cut sil in the edge of audio") parser.add_argument( "--spk_emb_dir", default=None, type=str, help="directory to speaker embedding files.") parser.add_argument( "--write_metadata_method", default="w", type=str, choices=["w", "a"], help="How the metadata.jsonl file is written.") args = parser.parse_args() rootdir = Path(args.rootdir).expanduser() dumpdir = Path(args.dumpdir).expanduser() # use absolute path dumpdir = dumpdir.resolve() dumpdir.mkdir(parents=True, exist_ok=True) label_file = Path(args.label_file).expanduser() if args.spk_emb_dir: spk_emb_dir = Path(args.spk_emb_dir).expanduser().resolve() else: spk_emb_dir = None assert rootdir.is_dir() assert label_file.is_file() with open(args.config, 'rt') as f: config = CfgNode(yaml.safe_load(f)) sentences, speaker_set = get_sentences_svs( label_file, dataset=args.dataset, sample_rate=config.fs, n_shift=config.n_shift, ) phone_id_map_path = dumpdir / "phone_id_map.txt" speaker_id_map_path = dumpdir / "speaker_id_map.txt" get_input_token(sentences, phone_id_map_path, args.dataset) get_spk_id_map(speaker_set, speaker_id_map_path) if args.dataset == "opencpop": wavdir = rootdir / "wavs" # split data into 3 sections train_file = rootdir / "train.txt" train_wav_files = [] with open(train_file, "r") as f_train: for line in f_train.readlines(): utt = line.split("|")[0] wav_name = utt + ".wav" wav_path = wavdir / wav_name train_wav_files.append(wav_path) test_file = rootdir / "test.txt" dev_wav_files = [] test_wav_files = [] num_dev = 106 count = 0 with open(test_file, "r") as f_test: for line in f_test.readlines(): count += 1 utt = line.split("|")[0] wav_name = utt + ".wav" wav_path = wavdir / wav_name if count > num_dev: test_wav_files.append(wav_path) else: dev_wav_files.append(wav_path) else: print("dataset should in {opencpop} now!") train_dump_dir = dumpdir / "train" / "raw" train_dump_dir.mkdir(parents=True, exist_ok=True) dev_dump_dir = dumpdir / "dev" / "raw" dev_dump_dir.mkdir(parents=True, exist_ok=True) test_dump_dir = dumpdir / "test" / "raw" test_dump_dir.mkdir(parents=True, exist_ok=True) # Extractor mel_extractor = LogMelFBank( sr=config.fs, n_fft=config.n_fft, hop_length=config.n_shift, win_length=config.win_length, window=config.window, n_mels=config.n_mels, fmin=config.fmin, fmax=config.fmax) pitch_extractor = Pitch( sr=config.fs, hop_length=config.n_shift, f0min=config.f0min, f0max=config.f0max) energy_extractor = Energy( n_fft=config.n_fft, hop_length=config.n_shift, win_length=config.win_length, window=config.window) # process for the 3 sections if train_wav_files: process_sentences( config=config, fps=train_wav_files, sentences=sentences, output_dir=train_dump_dir, mel_extractor=mel_extractor, pitch_extractor=pitch_extractor, energy_extractor=energy_extractor, nprocs=args.num_cpu, cut_sil=args.cut_sil, spk_emb_dir=spk_emb_dir, write_metadata_method=args.write_metadata_method) if dev_wav_files: process_sentences( config=config, fps=dev_wav_files, sentences=sentences, output_dir=dev_dump_dir, mel_extractor=mel_extractor, pitch_extractor=pitch_extractor, energy_extractor=energy_extractor, nprocs=args.num_cpu, cut_sil=args.cut_sil, spk_emb_dir=spk_emb_dir, write_metadata_method=args.write_metadata_method) if test_wav_files: process_sentences( config=config, fps=test_wav_files, sentences=sentences, output_dir=test_dump_dir, mel_extractor=mel_extractor, pitch_extractor=pitch_extractor, energy_extractor=energy_extractor, nprocs=args.num_cpu, cut_sil=args.cut_sil, spk_emb_dir=spk_emb_dir, write_metadata_method=args.write_metadata_method) if __name__ == "__main__": main()