# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright 2019 Mobvoi Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from wenet(https://github.com/wenet-e2e/wenet) """Encoder definition.""" from typing import List from typing import Optional from typing import Tuple from typing import Union import paddle from paddle import nn from typeguard import check_argument_types from paddlespeech.s2t.modules.activation import get_activation from paddlespeech.s2t.modules.align import LayerNorm from paddlespeech.s2t.modules.align import Linear from paddlespeech.s2t.modules.attention import MultiHeadedAttention from paddlespeech.s2t.modules.attention import RelPositionMultiHeadedAttention from paddlespeech.s2t.modules.attention import RoPERelPositionMultiHeadedAttention from paddlespeech.s2t.modules.conformer_convolution import ConvolutionModule from paddlespeech.s2t.modules.embedding import NoPositionalEncoding from paddlespeech.s2t.modules.embedding import PositionalEncoding from paddlespeech.s2t.modules.embedding import RelPositionalEncoding from paddlespeech.s2t.modules.encoder_layer import ConformerEncoderLayer from paddlespeech.s2t.modules.encoder_layer import SqueezeformerEncoderLayer from paddlespeech.s2t.modules.encoder_layer import TransformerEncoderLayer from paddlespeech.s2t.modules.mask import add_optional_chunk_mask from paddlespeech.s2t.modules.mask import make_non_pad_mask from paddlespeech.s2t.modules.positionwise_feed_forward import PositionwiseFeedForward from paddlespeech.s2t.modules.subsampling import Conv2dSubsampling4 from paddlespeech.s2t.modules.subsampling import Conv2dSubsampling6 from paddlespeech.s2t.modules.subsampling import Conv2dSubsampling8 from paddlespeech.s2t.modules.subsampling import DepthwiseConv2DSubsampling4 from paddlespeech.s2t.modules.subsampling import LinearNoSubsampling from paddlespeech.s2t.modules.time_reduction import TimeReductionLayer1D from paddlespeech.s2t.modules.time_reduction import TimeReductionLayer2D from paddlespeech.s2t.modules.time_reduction import TimeReductionLayerStream from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() __all__ = [ "BaseEncoder", 'TransformerEncoder', "ConformerEncoder", "SqueezeformerEncoder" ] class BaseEncoder(nn.Layer): def __init__(self, input_size: int, output_size: int=256, attention_heads: int=4, linear_units: int=2048, num_blocks: int=6, dropout_rate: float=0.1, positional_dropout_rate: float=0.1, attention_dropout_rate: float=0.0, input_layer: str="conv2d", pos_enc_layer_type: str="abs_pos", normalize_before: bool=True, concat_after: bool=False, static_chunk_size: int=0, use_dynamic_chunk: bool=False, global_cmvn: paddle.nn.Layer=None, use_dynamic_left_chunk: bool=False, max_len: int=5000): """ Args: input_size (int): input dim, d_feature output_size (int): dimension of attention, d_model attention_heads (int): the number of heads of multi head attention linear_units (int): the hidden units number of position-wise feed forward num_blocks (int): the number of encoder blocks dropout_rate (float): dropout rate attention_dropout_rate (float): dropout rate in attention positional_dropout_rate (float): dropout rate after adding positional encoding input_layer (str): input layer type. optional [linear, conv2d, conv2d6, conv2d8] pos_enc_layer_type (str): Encoder positional encoding layer type. opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] normalize_before (bool): True: use layer_norm before each sub-block of a layer. False: use layer_norm after each sub-block of a layer. concat_after (bool): whether to concat attention layer's input and output. True: x -> x + linear(concat(x, att(x))) False: x -> x + att(x) static_chunk_size (int): chunk size for static chunk training and decoding use_dynamic_chunk (bool): whether use dynamic chunk size for training or not, You can only use fixed chunk(chunk_size > 0) or dyanmic chunk size(use_dynamic_chunk = True) global_cmvn (Optional[paddle.nn.Layer]): Optional GlobalCMVN layer use_dynamic_left_chunk (bool): whether use dynamic left chunk in dynamic chunk training """ assert check_argument_types() super().__init__() self._output_size = output_size if pos_enc_layer_type == "abs_pos": pos_enc_class = PositionalEncoding elif pos_enc_layer_type == "rel_pos": pos_enc_class = RelPositionalEncoding elif pos_enc_layer_type == "rope_pos": pos_enc_class = RelPositionalEncoding elif pos_enc_layer_type == "no_pos": pos_enc_class = NoPositionalEncoding else: raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) if input_layer == "linear": subsampling_class = LinearNoSubsampling elif input_layer == "conv2d": subsampling_class = Conv2dSubsampling4 elif input_layer == "conv2d6": subsampling_class = Conv2dSubsampling6 elif input_layer == "conv2d8": subsampling_class = Conv2dSubsampling8 else: raise ValueError("unknown input_layer: " + input_layer) self.global_cmvn = global_cmvn self.embed = subsampling_class( idim=input_size, odim=output_size, dropout_rate=dropout_rate, pos_enc_class=pos_enc_class( d_model=output_size, dropout_rate=positional_dropout_rate, max_len=max_len), ) self.normalize_before = normalize_before self.after_norm = LayerNorm(output_size, epsilon=1e-12) self.static_chunk_size = static_chunk_size self.use_dynamic_chunk = use_dynamic_chunk self.use_dynamic_left_chunk = use_dynamic_left_chunk def output_size(self) -> int: return self._output_size def forward( self, xs: paddle.Tensor, xs_lens: paddle.Tensor, decoding_chunk_size: int=0, num_decoding_left_chunks: int=-1, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """Embed positions in tensor. Args: xs: padded input tensor (B, L, D) xs_lens: input length (B) decoding_chunk_size: decoding chunk size for dynamic chunk 0: default for training, use random dynamic chunk. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. num_decoding_left_chunks: number of left chunks, this is for decoding, the chunk size is decoding_chunk_size. >=0: use num_decoding_left_chunks <0: use all left chunks Returns: encoder output tensor, lens and mask """ masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, L) if self.global_cmvn is not None: xs = self.global_cmvn(xs) xs, pos_emb, masks = self.embed(xs, masks, offset=0) mask_pad = ~masks chunk_masks = add_optional_chunk_mask( xs, masks, self.use_dynamic_chunk, self.use_dynamic_left_chunk, decoding_chunk_size, self.static_chunk_size, num_decoding_left_chunks) for layer in self.encoders: xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) if self.normalize_before: xs = self.after_norm(xs) # Here we assume the mask is not changed in encoder layers, so just # return the masks before encoder layers, and the masks will be used # for cross attention with decoder later return xs, masks def forward_chunk( self, xs: paddle.Tensor, offset: int, required_cache_size: int, att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]), cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]), att_mask: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool) ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """ Forward just one chunk Args: xs (paddle.Tensor): chunk audio feat input, [B=1, T, D], where `T==(chunk_size-1)*subsampling_rate + subsample.right_context + 1` offset (int): current offset in encoder output time stamp required_cache_size (int): cache size required for next chunk compuation >=0: actual cache size <0: means all history cache is required att_cache(paddle.Tensor): cache tensor for key & val in transformer/conformer attention. Shape is (elayers, head, cache_t1, d_k * 2), where`head * d_k == hidden-dim` and `cache_t1 == chunk_size * num_decoding_left_chunks`. cnn_cache (paddle.Tensor): cache tensor for cnn_module in conformer, (elayers, B=1, hidden-dim, cache_t2), where `cache_t2 == cnn.lorder - 1` Returns: paddle.Tensor: output of current input xs, (B=1, chunk_size, hidden-dim) paddle.Tensor: new attention cache required for next chunk, dyanmic shape (elayers, head, T, d_k*2) depending on required_cache_size paddle.Tensor: new conformer cnn cache required for next chunk, with same shape as the original cnn_cache """ assert xs.shape[0] == 1 # batch size must be one # tmp_masks is just for interface compatibility, [B=1, C=1, T] tmp_masks = paddle.ones([1, 1, xs.shape[1]], dtype=paddle.bool) if self.global_cmvn is not None: xs = self.global_cmvn(xs) # before embed, xs=(B, T, D1), pos_emb=(B=1, T, D) xs, pos_emb, _ = self.embed(xs, tmp_masks, offset=offset) # after embed, xs=(B=1, chunk_size, hidden-dim) elayers, _, cache_t1, _ = att_cache.shape chunk_size = xs.shape[1] attention_key_size = cache_t1 + chunk_size # only used when using `RelPositionMultiHeadedAttention` and `RoPERelPositionMultiHeadedAttention` pos_emb = self.embed.position_encoding( offset=offset - cache_t1, size=attention_key_size) if required_cache_size < 0: next_cache_start = 0 elif required_cache_size == 0: next_cache_start = attention_key_size else: next_cache_start = max(attention_key_size - required_cache_size, 0) r_att_cache = [] r_cnn_cache = [] for i, layer in enumerate(self.encoders): # att_cache[i:i+1] = (1, head, cache_t1, d_k*2) # cnn_cache[i:i+1] = (1, B=1, hidden-dim, cache_t2) # WARNING: eliminate if-else cond op in graph # tensor zeros([0,0,0,0]) support [i:i+1] slice, will return zeros([0,0,0,0]) tensor # raw code as below: # att_cache=att_cache[i:i+1] if elayers > 0 else att_cache, # cnn_cache=cnn_cache[i:i+1] if cnn_cache.shape[0] > 0 else cnn_cache, xs, _, new_att_cache, new_cnn_cache = layer( xs, att_mask, pos_emb, att_cache=att_cache[i:i + 1], cnn_cache=cnn_cache[i:i + 1], ) # new_att_cache = (1, head, attention_key_size, d_k*2) # new_cnn_cache = (B=1, hidden-dim, cache_t2) r_att_cache.append(new_att_cache[:, :, next_cache_start:, :]) r_cnn_cache.append(new_cnn_cache) # add elayer dim if self.normalize_before: xs = self.after_norm(xs) # r_att_cache (elayers, head, T, d_k*2) # r_cnn_cache (elayers, B=1, hidden-dim, cache_t2) r_att_cache = paddle.concat(r_att_cache, axis=0) r_cnn_cache = paddle.stack(r_cnn_cache, axis=0) return xs, r_att_cache, r_cnn_cache def forward_chunk_by_chunk( self, xs: paddle.Tensor, decoding_chunk_size: int, num_decoding_left_chunks: int=-1, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """ Forward input chunk by chunk with chunk_size like a streaming fashion Here we should pay special attention to computation cache in the streaming style forward chunk by chunk. Three things should be taken into account for computation in the current network: 1. transformer/conformer encoder layers output cache 2. convolution in conformer 3. convolution in subsampling However, we don't implement subsampling cache for: 1. We can control subsampling module to output the right result by overlapping input instead of cache left context, even though it wastes some computation, but subsampling only takes a very small fraction of computation in the whole model. 2. Typically, there are several covolution layers with subsampling in subsampling module, it is tricky and complicated to do cache with different convolution layers with different subsampling rate. 3. Currently, nn.Sequential is used to stack all the convolution layers in subsampling, we need to rewrite it to make it work with cache, which is not prefered. Args: xs (paddle.Tensor): (1, max_len, dim) chunk_size (int): decoding chunk size. num_left_chunks (int): decoding with num left chunks. """ assert decoding_chunk_size > 0 # The model is trained by static or dynamic chunk assert self.static_chunk_size > 0 or self.use_dynamic_chunk # feature stride and window for `subsampling` module subsampling = self.embed.subsampling_rate context = self.embed.right_context + 1 # Add current frame stride = subsampling * decoding_chunk_size decoding_window = (decoding_chunk_size - 1) * subsampling + context num_frames = xs.shape[1] required_cache_size = decoding_chunk_size * num_decoding_left_chunks att_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0]) cnn_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0]) outputs = [] offset = 0 # Feed forward overlap input step by step for cur in range(0, num_frames - context + 1, stride): end = min(cur + decoding_window, num_frames) chunk_xs = xs[:, cur:end, :] (y, att_cache, cnn_cache) = self.forward_chunk( chunk_xs, offset, required_cache_size, att_cache, cnn_cache) outputs.append(y) offset += y.shape[1] ys = paddle.cat(outputs, 1) masks = paddle.ones([1, 1, ys.shape[1]], dtype=paddle.bool) return ys, masks class TransformerEncoder(BaseEncoder): """Transformer encoder module.""" def __init__( self, input_size: int, output_size: int=256, attention_heads: int=4, linear_units: int=2048, num_blocks: int=6, dropout_rate: float=0.1, positional_dropout_rate: float=0.1, attention_dropout_rate: float=0.0, input_layer: str="conv2d", pos_enc_layer_type: str="abs_pos", normalize_before: bool=True, concat_after: bool=False, static_chunk_size: int=0, use_dynamic_chunk: bool=False, global_cmvn: nn.Layer=None, use_dynamic_left_chunk: bool=False, ): """ Construct TransformerEncoder See Encoder for the meaning of each parameter. """ assert check_argument_types() super().__init__(input_size, output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, attention_dropout_rate, input_layer, pos_enc_layer_type, normalize_before, concat_after, static_chunk_size, use_dynamic_chunk, global_cmvn, use_dynamic_left_chunk) self.encoders = nn.LayerList([ TransformerEncoderLayer( size=output_size, self_attn=MultiHeadedAttention(attention_heads, output_size, attention_dropout_rate), feed_forward=PositionwiseFeedForward(output_size, linear_units, dropout_rate), dropout_rate=dropout_rate, normalize_before=normalize_before, concat_after=concat_after) for _ in range(num_blocks) ]) def forward_one_step( self, xs: paddle.Tensor, masks: paddle.Tensor, cache=None, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """Encode input frame. Args: xs (paddle.Tensor): (Prefix) Input tensor. (B, T, D) masks (paddle.Tensor): Mask tensor. (B, T, T) cache (List[paddle.Tensor]): List of cache tensors. Returns: paddle.Tensor: Output tensor. paddle.Tensor: Mask tensor. List[paddle.Tensor]: List of new cache tensors. """ if self.global_cmvn is not None: xs = self.global_cmvn(xs) xs, pos_emb, masks = self.embed(xs, masks, offset=0) if cache is None: cache = [None for _ in range(len(self.encoders))] new_cache = [] for c, e in zip(cache, self.encoders): xs, masks, _ = e(xs, masks, output_cache=c) new_cache.append(xs) if self.normalize_before: xs = self.after_norm(xs) return xs, masks, new_cache class ConformerEncoder(BaseEncoder): """Conformer encoder module.""" def __init__(self, input_size: int, output_size: int=256, attention_heads: int=4, linear_units: int=2048, num_blocks: int=6, dropout_rate: float=0.1, positional_dropout_rate: float=0.1, attention_dropout_rate: float=0.0, input_layer: str="conv2d", pos_enc_layer_type: str="rel_pos", normalize_before: bool=True, concat_after: bool=False, static_chunk_size: int=0, use_dynamic_chunk: bool=False, global_cmvn: nn.Layer=None, use_dynamic_left_chunk: bool=False, positionwise_conv_kernel_size: int=1, macaron_style: bool=True, selfattention_layer_type: str="rel_selfattn", activation_type: str="swish", use_cnn_module: bool=True, cnn_module_kernel: int=15, causal: bool=False, cnn_module_norm: str="batch_norm", max_len: int=5000): """Construct ConformerEncoder Args: input_size to use_dynamic_chunk, see in BaseEncoder positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. macaron_style (bool): Whether to use macaron style for positionwise layer. selfattention_layer_type (str): Encoder attention layer type, the parameter has no effect now, it's just for configure compatibility. activation_type (str): Encoder activation function type. use_cnn_module (bool): Whether to use convolution module. cnn_module_kernel (int): Kernel size of convolution module. causal (bool): whether to use causal convolution or not. cnn_module_norm (str): cnn conv norm type, Optional['batch_norm','layer_norm'] """ assert check_argument_types() super().__init__(input_size, output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, attention_dropout_rate, input_layer, pos_enc_layer_type, normalize_before, concat_after, static_chunk_size, use_dynamic_chunk, global_cmvn, use_dynamic_left_chunk, max_len) activation = get_activation(activation_type) # self-attention module definition if pos_enc_layer_type == "abs_pos": encoder_selfattn_layer = MultiHeadedAttention encoder_selfattn_layer_args = (attention_heads, output_size, attention_dropout_rate) elif pos_enc_layer_type == "rel_pos": encoder_selfattn_layer = RelPositionMultiHeadedAttention encoder_selfattn_layer_args = (attention_heads, encoder_dim, attention_dropout_rate) elif pos_enc_layer_type == "rope_pos": encoder_selfattn_layer = RoPERelPositionMultiHeadedAttention encoder_selfattn_layer_args = (attention_heads, encoder_dim, attention_dropout_rate) else: raise ValueError( f"pos_enc_layer_type {pos_enc_layer_type} not supported.") # feed-forward module definition positionwise_layer = PositionwiseFeedForward positionwise_layer_args = (output_size, linear_units, dropout_rate, activation) # convolution module definition convolution_layer = ConvolutionModule convolution_layer_args = (output_size, cnn_module_kernel, activation, cnn_module_norm, causal) self.encoders = nn.LayerList([ ConformerEncoderLayer( size=output_size, self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args), feed_forward=positionwise_layer(*positionwise_layer_args), feed_forward_macaron=positionwise_layer( *positionwise_layer_args) if macaron_style else None, conv_module=convolution_layer(*convolution_layer_args) if use_cnn_module else None, dropout_rate=dropout_rate, normalize_before=normalize_before, concat_after=concat_after) for _ in range(num_blocks) ]) class SqueezeformerEncoder(nn.Layer): def __init__(self, input_size: int, encoder_dim: int=256, output_size: int=256, attention_heads: int=4, num_blocks: int=12, reduce_idx: Optional[Union[int, List[int]]]=5, recover_idx: Optional[Union[int, List[int]]]=11, feed_forward_expansion_factor: int=4, dw_stride: bool=False, input_dropout_rate: float=0.1, pos_enc_layer_type: str="rel_pos", time_reduction_layer_type: str="conv1d", feed_forward_dropout_rate: float=0.1, attention_dropout_rate: float=0.1, cnn_module_kernel: int=31, cnn_norm_type: str="layer_norm", dropout: float=0.1, causal: bool=False, adaptive_scale: bool=True, activation_type: str="swish", init_weights: bool=True, global_cmvn: paddle.nn.Layer=None, normalize_before: bool=False, use_dynamic_chunk: bool=False, concat_after: bool=False, static_chunk_size: int=0, use_dynamic_left_chunk: bool=False): """Construct SqueezeformerEncoder Args: input_size to use_dynamic_chunk, see in Transformer BaseEncoder. encoder_dim (int): The hidden dimension of encoder layer. output_size (int): The output dimension of final projection layer. attention_heads (int): Num of attention head in attention module. num_blocks (int): Num of encoder layers. reduce_idx Optional[Union[int, List[int]]]: reduce layer index, from 40ms to 80ms per frame. recover_idx Optional[Union[int, List[int]]]: recover layer index, from 80ms to 40ms per frame. feed_forward_expansion_factor (int): Enlarge coefficient of FFN. dw_stride (bool): Whether do depthwise convolution on subsampling module. input_dropout_rate (float): Dropout rate of input projection layer. pos_enc_layer_type (str): Self attention type. time_reduction_layer_type (str): Conv1d or Conv2d reduction layer. cnn_module_kernel (int): Kernel size of CNN module. activation_type (str): Encoder activation function type. cnn_module_kernel (int): Kernel size of convolution module. adaptive_scale (bool): Whether to use adaptive scale. init_weights (bool): Whether to initialize weights. causal (bool): whether to use causal convolution or not. """ assert check_argument_types() super().__init__() self.global_cmvn = global_cmvn self.reduce_idx: Optional[Union[int, List[int]]] = [reduce_idx] \ if type(reduce_idx) == int else reduce_idx self.recover_idx: Optional[Union[int, List[int]]] = [recover_idx] \ if type(recover_idx) == int else recover_idx self.check_ascending_list() if reduce_idx is None: self.time_reduce = None else: if recover_idx is None: self.time_reduce = 'normal' # no recovery at the end else: self.time_reduce = 'recover' # recovery at the end assert len(self.reduce_idx) == len(self.recover_idx) self.reduce_stride = 2 self._output_size = output_size self.normalize_before = normalize_before self.static_chunk_size = static_chunk_size self.use_dynamic_chunk = use_dynamic_chunk self.use_dynamic_left_chunk = use_dynamic_left_chunk activation = get_activation(activation_type) # self-attention module definition if pos_enc_layer_type == "abs_pos": encoder_selfattn_layer = MultiHeadedAttention encoder_selfattn_layer_args = (attention_heads, output_size, attention_dropout_rate) elif pos_enc_layer_type == "rel_pos": encoder_selfattn_layer = RelPositionMultiHeadedAttention encoder_selfattn_layer_args = (attention_heads, encoder_dim, attention_dropout_rate, adaptive_scale, init_weights) elif pos_enc_layer_type == "rope_pos": encoder_selfattn_layer = RoPERelPositionMultiHeadedAttention encoder_selfattn_layer_args = (attention_heads, encoder_dim, attention_dropout_rate, adaptive_scale, init_weights) else: raise ValueError( f"pos_enc_layer_type {pos_enc_layer_type} not supported.") # feed-forward module definition positionwise_layer = PositionwiseFeedForward positionwise_layer_args = ( encoder_dim, encoder_dim * feed_forward_expansion_factor, feed_forward_dropout_rate, activation, adaptive_scale, init_weights) # convolution module definition convolution_layer = ConvolutionModule convolution_layer_args = (encoder_dim, cnn_module_kernel, activation, cnn_norm_type, causal, True, adaptive_scale, init_weights) self.embed = DepthwiseConv2DSubsampling4( 1, encoder_dim, RelPositionalEncoding(encoder_dim, dropout_rate=0.1), dw_stride, input_size, input_dropout_rate, init_weights) self.preln = LayerNorm(encoder_dim) self.encoders = paddle.nn.LayerList([ SqueezeformerEncoderLayer( encoder_dim, encoder_selfattn_layer(*encoder_selfattn_layer_args), positionwise_layer(*positionwise_layer_args), convolution_layer(*convolution_layer_args), positionwise_layer(*positionwise_layer_args), normalize_before, dropout, concat_after) for _ in range(num_blocks) ]) if time_reduction_layer_type == 'conv1d': time_reduction_layer = TimeReductionLayer1D time_reduction_layer_args = { 'channel': encoder_dim, 'out_dim': encoder_dim, } elif time_reduction_layer_type == 'stream': time_reduction_layer = TimeReductionLayerStream time_reduction_layer_args = { 'channel': encoder_dim, 'out_dim': encoder_dim, } else: time_reduction_layer = TimeReductionLayer2D time_reduction_layer_args = {'encoder_dim': encoder_dim} self.time_reduction_layer = time_reduction_layer( **time_reduction_layer_args) self.time_recover_layer = Linear(encoder_dim, encoder_dim) self.final_proj = None if output_size != encoder_dim: self.final_proj = Linear(encoder_dim, output_size) def output_size(self) -> int: return self._output_size def forward( self, xs: paddle.Tensor, xs_lens: paddle.Tensor, decoding_chunk_size: int=0, num_decoding_left_chunks: int=-1, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """Embed positions in tensor. Args: xs: padded input tensor (B, L, D) xs_lens: input length (B) decoding_chunk_size: decoding chunk size for dynamic chunk 0: default for training, use random dynamic chunk. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. num_decoding_left_chunks: number of left chunks, this is for decoding, the chunk size is decoding_chunk_size. >=0: use num_decoding_left_chunks <0: use all left chunks Returns: encoder output tensor, lens and mask """ masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, L) if self.global_cmvn is not None: xs = self.global_cmvn(xs) xs, pos_emb, masks = self.embed(xs, masks) mask_pad = masks chunk_masks = add_optional_chunk_mask( xs, masks, self.use_dynamic_chunk, self.use_dynamic_left_chunk, decoding_chunk_size, self.static_chunk_size, num_decoding_left_chunks) xs_lens = chunk_masks.squeeze(1).sum(1) xs = self.preln(xs) recover_activations: \ List[Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]] = [] index = 0 for i, layer in enumerate(self.encoders): if self.reduce_idx is not None: if self.time_reduce is not None and i in self.reduce_idx: recover_activations.append( (xs, chunk_masks, pos_emb, mask_pad)) xs, xs_lens, chunk_masks, mask_pad = self.time_reduction_layer( xs, xs_lens, chunk_masks, mask_pad) pos_emb = pos_emb[:, ::2, :] index += 1 if self.recover_idx is not None: if self.time_reduce == 'recover' and i in self.recover_idx: index -= 1 recover_tensor, recover_chunk_masks, recover_pos_emb, recover_mask_pad = recover_activations[ index] # recover output length for ctc decode xs = paddle.repeat_interleave(xs, repeats=2, axis=1) xs = self.time_recover_layer(xs) recoverd_t = recover_tensor.shape[1] xs = recover_tensor + xs[:, :recoverd_t, :] chunk_masks = recover_chunk_masks pos_emb = recover_pos_emb mask_pad = recover_mask_pad xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) if self.final_proj is not None: xs = self.final_proj(xs) return xs, masks def check_ascending_list(self): if self.reduce_idx is not None: assert self.reduce_idx == sorted(self.reduce_idx), \ "reduce_idx should be int or ascending list" if self.recover_idx is not None: assert self.recover_idx == sorted(self.recover_idx), \ "recover_idx should be int or ascending list" def calculate_downsampling_factor(self, i: int) -> int: if self.reduce_idx is None: return 1 else: reduce_exp, recover_exp = 0, 0 for exp, rd_idx in enumerate(self.reduce_idx): if i >= rd_idx: reduce_exp = exp + 1 if self.recover_idx is not None: for exp, rc_idx in enumerate(self.recover_idx): if i >= rc_idx: recover_exp = exp + 1 return int(2**(reduce_exp - recover_exp)) def forward_chunk( self, xs: paddle.Tensor, offset: int, required_cache_size: int, att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]), cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]), att_mask: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool), ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """ Forward just one chunk Args: xs (paddle.Tensor): chunk input, with shape (b=1, time, mel-dim), where `time == (chunk_size - 1) * subsample_rate + \ subsample.right_context + 1` offset (int): current offset in encoder output time stamp required_cache_size (int): cache size required for next chunk compuation >=0: actual cache size <0: means all history cache is required att_cache (paddle.Tensor): cache tensor for KEY & VALUE in transformer/conformer attention, with shape (elayers, head, cache_t1, d_k * 2), where `head * d_k == hidden-dim` and `cache_t1 == chunk_size * num_decoding_left_chunks`. cnn_cache (paddle.Tensor): cache tensor for cnn_module in conformer, (elayers, b=1, hidden-dim, cache_t2), where `cache_t2 == cnn.lorder - 1` Returns: paddle.Tensor: output of current input xs, with shape (b=1, chunk_size, hidden-dim). paddle.Tensor: new attention cache required for next chunk, with dynamic shape (elayers, head, ?, d_k * 2) depending on required_cache_size. paddle.Tensor: new conformer cnn cache required for next chunk, with same shape as the original cnn_cache. """ assert xs.shape[0] == 1 # batch size must be one if self.global_cmvn is not None: xs = self.global_cmvn(xs) # tmp_masks is just for interface compatibility, [B=1, C=1, T] tmp_masks = paddle.ones([1, 1, xs.shape[1]], dtype=paddle.bool) # before embed, xs=(B, T, D1), pos_emb=(B=1, T, D) xs, pos_emb, _ = self.embed(xs, tmp_masks, offset=offset) # NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim) elayers, cache_t1 = att_cache.shape[0], att_cache.shape[2] chunk_size = xs.shape[1] attention_key_size = cache_t1 + chunk_size pos_emb = self.embed.position_encoding( offset=offset - cache_t1, size=attention_key_size) if required_cache_size < 0: next_cache_start = 0 elif required_cache_size == 0: next_cache_start = attention_key_size else: next_cache_start = max(attention_key_size - required_cache_size, 0) r_att_cache = [] r_cnn_cache = [] mask_pad = paddle.ones([1, xs.shape[1]], dtype=paddle.bool) mask_pad = mask_pad.unsqueeze(1) max_att_len: int = 0 recover_activations: \ List[Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]] = [] index = 0 xs_lens = paddle.to_tensor([xs.shape[1]], dtype=paddle.int32) xs = self.preln(xs) for i, layer in enumerate(self.encoders): # NOTE(xcsong): Before layer.forward # shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2), # shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2) if self.reduce_idx is not None: if self.time_reduce is not None and i in self.reduce_idx: recover_activations.append( (xs, att_mask, pos_emb, mask_pad)) xs, xs_lens, att_mask, mask_pad = self.time_reduction_layer( xs, xs_lens, att_mask, mask_pad) pos_emb = pos_emb[:, ::2, :] index += 1 if self.recover_idx is not None: if self.time_reduce == 'recover' and i in self.recover_idx: index -= 1 recover_tensor, recover_att_mask, recover_pos_emb, recover_mask_pad = recover_activations[ index] # recover output length for ctc decode xs = paddle.repeat_interleave(xs, repeats=2, axis=1) xs = self.time_recover_layer(xs) recoverd_t = recover_tensor.shape[1] xs = recover_tensor + xs[:, :recoverd_t, :] att_mask = recover_att_mask pos_emb = recover_pos_emb mask_pad = recover_mask_pad factor = self.calculate_downsampling_factor(i) att_cache1 = att_cache[ i:i + 1][:, :, ::factor, :][:, :, :pos_emb.shape[1] - xs.shape[ 1], :] cnn_cache1 = cnn_cache[i] if cnn_cache.shape[0] > 0 else cnn_cache xs, _, new_att_cache, new_cnn_cache = layer( xs, att_mask, pos_emb, att_cache=att_cache1, cnn_cache=cnn_cache1) # NOTE(xcsong): After layer.forward # shape(new_att_cache) is (1, head, attention_key_size, d_k * 2), # shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2) cached_att = new_att_cache[:, :, next_cache_start // factor:, :] cached_cnn = new_cnn_cache.unsqueeze(0) cached_att = cached_att.repeat_interleave(repeats=factor, axis=2) if i == 0: # record length for the first block as max length max_att_len = cached_att.shape[2] r_att_cache.append(cached_att[:, :, :max_att_len, :]) r_cnn_cache.append(cached_cnn) # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2), # ? may be larger than cache_t1, it depends on required_cache_size r_att_cache = paddle.concat(r_att_cache, axis=0) # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2) r_cnn_cache = paddle.concat(r_cnn_cache, axis=0) if self.final_proj is not None: xs = self.final_proj(xs) return xs, r_att_cache, r_cnn_cache