# -------------------------------------------------------- # paddle: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf) # Github source: https://github.com/microsoft/unilm/tree/master/paddle # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq code bases # https://github.com/pytorch/fairseq # -------------------------------------------------------- import math import warnings from typing import Dict, Optional, Tuple from .functional import multi_head_attention_forward_paddle import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import Tensor class TransposeLast(nn.Layer): def __init__(self, deconstruct_idx=None): super().__init__() self.deconstruct_idx = deconstruct_idx def forward(self, x): if self.deconstruct_idx is not None: x = x[self.deconstruct_idx] return paddle.transpose(x, perm=[0, 2, 1]) class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input) class Fp32GroupNorm(nn.GroupNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.group_norm( input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input) class SamePad(nn.Layer): def __init__(self, kernel_size, causal=False): super().__init__() if causal: self.remove = kernel_size - 1 else: self.remove = 1 if kernel_size % 2 == 0 else 0 def forward(self, x): if self.remove > 0: x = x[:, :, : -self.remove] return x class Swish(nn.Layer): """Swish function """ def __init__(self): """Construct an MultiHeadedAttention object.""" super(Swish, self).__init__() self.act = nn.Sigmoid() def forward(self, x): return x * self.act(x) class GLU_Linear(nn.Layer): def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True): super(GLU_Linear, self).__init__() self.glu_type = glu_type self.output_dim = output_dim if glu_type == "sigmoid": self.glu_act = nn.Sigmoid() elif glu_type == "swish": self.glu_act = Swish() elif glu_type == "relu": self.glu_act = nn.ReLU() elif glu_type == "gelu": self.glu_act = nn.GELU() if bias_in_glu: self.linear = nn.Linear(input_dim, output_dim * 2, True) else: self.linear = nn.Linear(input_dim, output_dim * 2, False) def forward(self, x): # to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case x = self.linear(x) if self.glu_type == "bilinear": x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2]) else: x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2])) return x def gelu_accurate(x): if not hasattr(gelu_accurate, "_a"): gelu_accurate._a = math.sqrt(2 / math.pi) return ( 0.5 * x * (1 + paddle.tanh(gelu_accurate._a * (x + 0.044715 * paddle.pow(x, 3)))) ) def gelu(x: Tensor) -> Tensor: return nn.functional.gelu(x.astype("float32")).astype(x.dtype) def get_activation_fn(activation: str): """Returns the activation function corresponding to `activation`""" if activation == "relu": return F.relu elif activation == "gelu": return gelu elif activation == "gelu_fast": warnings.warn( "--activation-fn=gelu_fast has been renamed to gelu_accurate" ) return gelu_accurate elif activation == "gelu_accurate": return gelu_accurate elif activation == "tanh": return paddle.tanh elif activation == "linear": return lambda x: x elif activation == "glu": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def quant_noise(module, p, block_size): """ Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product Quantization as described in "Training with Quantization Noise for Extreme Model Compression" Args: - module: nn.Layer - p: amount of Quantization Noise - block_size: size of the blocks for subsequent quantization with iPQ Remarks: - Module weights must have the right sizes wrt the block size - Only Linear, Embedding and Conv2d modules are supported for the moment - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping blocks """ # if no quantization noise, don't register hook if p <= 0: return module # supported modules assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) # test whether module.weight has the right sizes wrt block_size is_conv = module.weight.ndim == 4 # 2D matrix if not is_conv: assert ( module.weight.size(1) % block_size == 0 ), "Input features must be a multiple of block sizes" # 4D matrix else: # 1x1 convolutions if module.kernel_size == (1, 1): assert ( module.in_channels % block_size == 0 ), "Input channels must be a multiple of block sizes" # regular convolutions else: k = module.kernel_size[0] * module.kernel_size[1] assert k % block_size == 0, "Kernel size must be a multiple of block size" def _forward_pre_hook(mod, input): # no noise for evaluation if mod.training: if not is_conv: # gather weight and sizes weight = mod.weight in_features = weight.size(1) out_features = weight.size(0) # split weight matrix into blocks and randomly drop selected blocks mask = paddle.zeros( in_features // block_size * out_features, device=weight.device ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) else: # gather weight and sizes weight = mod.weight in_channels = mod.in_channels out_channels = mod.out_channels # split weight matrix into blocks and randomly drop selected blocks if mod.kernel_size == (1, 1): mask = paddle.zeros( int(in_channels // block_size * out_channels), device=weight.device, ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) else: mask = paddle.zeros( weight.size(0), weight.size(1), device=weight.device ) mask.bernoulli_(p) mask = ( mask.unsqueeze(2) .unsqueeze(3) .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) ) # scale weights and apply mask mask = mask.to( paddle.bool ) s = 1 / (1 - p) mod.weight.data = s * weight.masked_fill(mask, 0) module.register_forward_pre_hook(_forward_pre_hook) return module class MultiheadAttention(nn.Layer): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, has_relative_attention_bias=True, num_buckets=32, max_distance=128, gru_rel_pos=True, rescale_init=False, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = nn.Dropout(dropout) self.has_relative_attention_bias = has_relative_attention_bias self.num_buckets = num_buckets self.max_distance = max_distance if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) self.head_dim = embed_dim // num_heads self.q_head_dim = self.head_dim self.k_head_dim = self.head_dim assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) k_bias = True if rescale_init: k_bias = False k_embed_dim = embed_dim q_embed_dim = embed_dim self.k_proj = quant_noise( nn.Linear(self.kdim, k_embed_dim, bias_attr=k_bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias_attr=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(embed_dim, q_embed_dim, bias_attr=bias), q_noise, qn_block_size ) self.out_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias_attr=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = self.create_parameter( shape=[1, 1, embed_dim], dtype="float32" ) self.bias_v = self.create_parameter( shape=[1, 1, embed_dim], dtype="float32" ) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.gru_rel_pos = gru_rel_pos if self.gru_rel_pos: self.grep_linear = nn.Linear(self.q_head_dim, 8) self.grep_a = self.create_parameter( shape=[1, num_heads, 1, 1], dtype="float32" ) self.reset_parameters() def reset_parameters(self): pass def _relative_positions_bucket(self, relative_positions, bidirectional=True): num_buckets = self.num_buckets max_distance = self.max_distance relative_buckets = 0 if bidirectional: num_buckets = num_buckets // 2 relative_buckets += (relative_positions > 0).astype("int64") * num_buckets relative_positions = paddle.abs(relative_positions) else: relative_positions = -paddle.minimum(relative_positions, paddle.zeros_like(relative_positions)) max_exact = num_buckets // 2 is_small = relative_positions < max_exact relative_postion_if_large = max_exact + ( paddle.log(relative_positions.astype("float32") / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).astype("int64") relative_postion_if_large = paddle.minimum( relative_postion_if_large, paddle.full_like(relative_postion_if_large, num_buckets - 1) ) relative_buckets += paddle.where(is_small, relative_positions, relative_postion_if_large) return relative_buckets def compute_bias(self, query_length, key_length): context_position = paddle.arange(query_length, dtype="int64")[:, None] memory_position = paddle.arange(key_length, dtype="int64")[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_positions_bucket( relative_position, bidirectional=True ) # relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose([2, 0, 1]) return values def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, position_bias: Optional[Tensor] = None ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.shape src_len = tgt_len assert embed_dim == self.embed_dim assert list(query.shape) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.shape if self.has_relative_attention_bias and position_bias is None: position_bias = self.compute_bias(tgt_len, src_len) position_bias_ = position_bias.unsqueeze(0) position_bias = paddle.concat([position_bias_ for _ in range(bsz)], axis=0) position_bias = position_bias.reshape([bsz * self.num_heads, tgt_len, src_len]) if ( incremental_state is None and not static_kv and self.q_head_dim == self.head_dim ): assert key is not None and value is not None assert attn_mask is None attn_mask_rel_pos = None if position_bias is not None: attn_mask_rel_pos = position_bias if self.gru_rel_pos: query_layer = query.transpose([1, 0, 2]) new_x_shape = query_layer.shape[:-1] + [self.num_heads, -1] query_layer = query_layer.reshape(new_x_shape) query_layer = query_layer.transpose([0, 2, 1, 3]) _B, _H, _L, __ = query_layer.shape gate_a, gate_b = paddle.nn.functional.sigmoid(self.grep_linear(query_layer).reshape([_B, _H, _L, 2, 4]).sum(-1, keepdim=False)).chunk(2, axis=-1) gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 attn_mask_rel_pos = gate_a_1.reshape([bsz * self.num_heads, -1, 1]) * position_bias attn_mask_rel_pos = attn_mask_rel_pos.reshape((-1, tgt_len, tgt_len)) k_proj_bias = self.k_proj.bias if k_proj_bias is None: k_proj_bias = paddle.zeros_like(self.q_proj.bias) x, attn = multi_head_attention_forward_paddle( query, key, value, self.embed_dim, self.num_heads, paddle.empty([0]), paddle.concat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias), axis=0), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask_rel_pos, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) return x, attn, position_bias if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = paddle.concat([k, self.bias_k.repeat(1, bsz, 1)], axis=0) v = paddle.concat([v, self.bias_v.repeat(1, bsz, 1)], axis=0) if attn_mask is not None: attn_mask = paddle.concat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], axis=1 ) if key_padding_mask is not None: key_padding_mask = paddle.concat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], axis=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.q_head_dim) .transpose([1, 0, 2]) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.k_head_dim) .transpose([1, 0, 2]) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose([1, 0, 2]) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = paddle.concat([prev_key, k], axis=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = paddle.concat([prev_value, v], axis=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = paddle.concat([k, k.new_zeros((k.size(0), 1) + k.shape[2:])], axis=1) v = paddle.concat([v, v.new_zeros((v.size(0), 1) + v.shape[2:])], axis=1) if attn_mask is not None: attn_mask = paddle.concat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], axis=1 ) if key_padding_mask is not None: key_padding_mask = paddle.concat( [ key_padding_mask, paddle.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], axis=1, ) attn_weights = paddle.matmul(q, k.transpose([0, 2, 1])) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.shape) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(paddle.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v, position_bias if position_bias is not None: if self.gru_rel_pos == 1: query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) _B, _H, _L, __ = query_layer.shape gate_a, gate_b = paddle.sigmoid(self.grep_linear(query_layer).view( _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, axis=-1) gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias position_bias = position_bias.view(attn_weights.shape) attn_weights = attn_weights + position_bias attn_weights_float = F.softmax( attn_weights, dim=-1 ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = paddle.bmm(attn_probs, v) assert list(attn.shape) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose([1, 0, 2]).reshape([tgt_len, bsz, embed_dim]) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose([1, 0, 2, 3]) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights, position_bias @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = paddle.concat( [prev_key_padding_mask.float(), key_padding_mask.float()], axis=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: if src_len > prev_key_padding_mask.size(1): filler = paddle.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = paddle.concat( [prev_key_padding_mask.float(), filler.float()], axis=1 ) else: new_key_padding_mask = prev_key_padding_mask.float() elif key_padding_mask is not None: if src_len > key_padding_mask.size(1): filler = paddle.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = paddle.concat( [filler.float(), key_padding_mask.float()], axis=1 ) else: new_key_padding_mask = key_padding_mask.float() else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights