############################################ # Network Architecture # ############################################ cmvn_file: cmvn_file_type: "json" # encoder related encoder: conformer encoder_conf: output_size: 256 # dimension of attention attention_heads: 4 linear_units: 2048 # the number of units of position-wise feed forward num_blocks: 12 # the number of encoder blocks dropout_rate: 0.1 # sublayer output dropout positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 normalize_before: True cnn_module_kernel: 15 use_cnn_module: True activation_type: 'swish' pos_enc_layer_type: 'rpoe_pos' # abs_pos, rel_pos, rope_pos selfattention_layer_type: 'rel_selfattn' # unused causal: true use_dynamic_chunk: true cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster use_dynamic_left_chunk: false # decoder related decoder: transformer # transformer, bitransformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 r_num_blocks: 3 # only for bitransformer dropout_rate: 0.1 # sublayer output dropout positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 # hybrid CTC/attention model_conf: ctc_weight: 0.3 lsm_weight: 0.1 # label smoothing option reverse_weight: 0.3 # only for bitransformer length_normalized_loss: false init_type: 'kaiming_uniform' # !Warning: need to convergence ########################################### # Data # ########################################### train_manifest: data/manifest.train dev_manifest: data/manifest.dev test_manifest: data/manifest.test ########################################### # Dataloader # ########################################### vocab_filepath: data/lang_char/vocab.txt spm_model_prefix: '' unit_type: 'char' preprocess_config: conf/preprocess.yaml feat_dim: 80 stride_ms: 10.0 window_ms: 25.0 sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs batch_size: 32 maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced minibatches: 0 # for debug batch_count: auto batch_bins: 0 batch_frames_in: 0 batch_frames_out: 0 batch_frames_inout: 0 num_workers: 2 subsampling_factor: 1 num_encs: 1 ########################################### # Training # ########################################### n_epoch: 240 accum_grad: 1 global_grad_clip: 5.0 dist_sampler: True optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-6 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 lr_decay: 1.0 log_interval: 100 checkpoint: kbest_n: 50 latest_n: 5