# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import numpy as np from sklearn.metrics import roc_curve def compute_eer(labels: np.ndarray, scores: np.ndarray) -> List[float]: ''' Compute EER and return score threshold. ''' fpr, tpr, threshold = roc_curve(y_true=labels, y_score=scores) fnr = 1 - tpr eer_threshold = threshold[np.nanargmin(np.absolute((fnr - fpr)))] eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))] return eer, eer_threshold