# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Duration predictor related modules.""" import paddle from paddle import nn from parakeet.modules.layer_norm import LayerNorm from parakeet.modules.masked_fill import masked_fill class DurationPredictor(nn.Layer): """Duration predictor module. This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf Note ---------- The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0): """Initilize duration predictor module. Parameters ---------- idim : int Input dimension. n_layers : int, optional Number of convolutional layers. n_chans : int, optional Number of channels of convolutional layers. kernel_size : int, optional Kernel size of convolutional layers. dropout_rate : float, optional Dropout rate. offset : float, optional Offset value to avoid nan in log domain. """ super(DurationPredictor, self).__init__() self.offset = offset self.conv = nn.LayerList() for idx in range(n_layers): in_chans = idim if idx == 0 else n_chans self.conv.append( nn.Sequential( nn.Conv1D( in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), nn.ReLU(), LayerNorm(n_chans, dim=1), nn.Dropout(dropout_rate), )) self.linear = nn.Linear(n_chans, 1, bias_attr=True) def _forward(self, xs, x_masks=None, is_inference=False): # (B, idim, Tmax) xs = xs.transpose([0, 2, 1]) # (B, C, Tmax) for f in self.conv: xs = f(xs) # NOTE: calculate in log domain # (B, Tmax) xs = self.linear(xs.transpose([0, 2, 1])).squeeze(-1) if is_inference: # NOTE: calculate in linear domain xs = paddle.clip(paddle.round(xs.exp() - self.offset), min=0) if x_masks is not None: xs = masked_fill(xs, x_masks, 0.0) return xs def forward(self, xs, x_masks=None): """Calculate forward propagation. Parameters ---------- xs : Tensor Batch of input sequences (B, Tmax, idim). x_masks : ByteTensor, optional Batch of masks indicating padded part (B, Tmax). Returns ---------- Tensor Batch of predicted durations in log domain (B, Tmax). """ return self._forward(xs, x_masks, False) def inference(self, xs, x_masks=None): """Inference duration. Parameters ---------- xs : Tensor Batch of input sequences (B, Tmax, idim). x_masks : Tensor(bool), optional Batch of masks indicating padded part (B, Tmax). Returns ---------- Tensor Batch of predicted durations in linear domain int64 (B, Tmax). """ return self._forward(xs, x_masks, True) class DurationPredictorLoss(nn.Layer): """Loss function module for duration predictor. The loss value is Calculated in log domain to make it Gaussian. """ def __init__(self, offset=1.0, reduction="mean"): """Initilize duration predictor loss module. Parameters ---------- offset : float, optional Offset value to avoid nan in log domain. reduction : str Reduction type in loss calculation. """ super(DurationPredictorLoss, self).__init__() self.criterion = nn.MSELoss(reduction=reduction) self.offset = offset def forward(self, outputs, targets): """Calculate forward propagation. Parameters ---------- outputs : Tensor Batch of prediction durations in log domain (B, T) targets : Tensor Batch of groundtruth durations in linear domain (B, T) Returns ---------- Tensor Mean squared error loss value. Note ---------- `outputs` is in log domain but `targets` is in linear domain. """ # NOTE: outputs is in log domain while targets in linear targets = paddle.log(targets.cast(dtype='float32') + self.offset) loss = self.criterion(outputs, targets) return loss