# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys from collections import OrderedDict from typing import Dict from typing import List from typing import Optional from typing import Union import paddle import soundfile from paddleaudio.backends import load as load_audio from paddleaudio.compliance.librosa import melspectrogram from yacs.config import CfgNode from ..executor import BaseExecutor from ..log import logger from ..utils import stats_wrapper from .pretrained_models import model_alias from .pretrained_models import pretrained_models from paddlespeech.utils.dynamic_import import dynamic_import from paddlespeech.vector.io.batch import feature_normalize from paddlespeech.vector.modules.sid_model import SpeakerIdetification class VectorExecutor(BaseExecutor): def __init__(self): super().__init__() self.model_alias = model_alias self.pretrained_models = pretrained_models self.parser = argparse.ArgumentParser( prog="paddlespeech.vector", add_help=True) self.parser.add_argument( "--model", type=str, default="ecapatdnn_voxceleb12", choices=["ecapatdnn_voxceleb12"], help="Choose model type of vector task.") self.parser.add_argument( "--task", type=str, default="spk", choices=["spk", "score"], help="task type in vector domain") self.parser.add_argument( "--input", type=str, default=None, help="Audio file to extract embedding.") self.parser.add_argument( "--sample_rate", type=int, default=16000, choices=[16000], help="Choose the audio sample rate of the model. 8000 or 16000") self.parser.add_argument( "--ckpt_path", type=str, default=None, help="Checkpoint file of model.") self.parser.add_argument( '--config', type=str, default=None, help='Config of asr task. Use deault config when it is None.') self.parser.add_argument( "--device", type=str, default=paddle.get_device(), help="Choose device to execute model inference.") self.parser.add_argument( '-d', '--job_dump_result', action='store_true', help='Save job result into file.') self.parser.add_argument( '-v', '--verbose', action='store_true', help='Increase logger verbosity of current task.') def execute(self, argv: List[str]) -> bool: """Command line entry for vector model Args: argv (List[str]): command line args list Returns: bool: False: some audio occurs error True: all audio process success """ # stage 0: parse the args and get the required args parser_args = self.parser.parse_args(argv) model = parser_args.model sample_rate = parser_args.sample_rate config = parser_args.config ckpt_path = parser_args.ckpt_path device = parser_args.device # stage 1: configurate the verbose flag if not parser_args.verbose: self.disable_task_loggers() # stage 2: read the input data and store them as a list task_source = self.get_task_source(parser_args.input) logger.info(f"task source: {task_source}") # stage 3: process the audio one by one # we do action according the task type task_result = OrderedDict() has_exceptions = False for id_, input_ in task_source.items(): try: # extract the speaker audio embedding if parser_args.task == "spk": logger.info("do vector spk task") res = self(input_, model, sample_rate, config, ckpt_path, device) task_result[id_] = res elif parser_args.task == "score": logger.info("do vector score task") logger.info(f"input content {input_}") if len(input_.split()) != 2: logger.error( f"vector score task input {input_} wav num is not two," "that is {len(input_.split())}") sys.exit(-1) # get the enroll and test embedding enroll_audio, test_audio = input_.split() logger.info( f"score task, enroll audio: {enroll_audio}, test audio: {test_audio}" ) enroll_embedding = self(enroll_audio, model, sample_rate, config, ckpt_path, device) test_embedding = self(test_audio, model, sample_rate, config, ckpt_path, device) # get the score res = self.get_embeddings_score(enroll_embedding, test_embedding) task_result[id_] = res except Exception as e: has_exceptions = True task_result[id_] = f'{e.__class__.__name__}: {e}' logger.info("task result as follows: ") logger.info(f"{task_result}") # stage 4: process the all the task results self.process_task_results(parser_args.input, task_result, parser_args.job_dump_result) # stage 5: return the exception flag # if return False, somen audio process occurs error if has_exceptions: return False else: return True def _get_job_contents( self, job_input: os.PathLike) -> Dict[str, Union[str, os.PathLike]]: """ Read a job input file and return its contents in a dictionary. Refactor from the Executor._get_job_contents Args: job_input (os.PathLike): The job input file. Returns: Dict[str, str]: Contents of job input. """ job_contents = OrderedDict() with open(job_input) as f: for line in f: line = line.strip() if not line: continue k = line.split(' ')[0] v = ' '.join(line.split(' ')[1:]) job_contents[k] = v return job_contents def get_embeddings_score(self, enroll_embedding, test_embedding): """get the enroll embedding and test embedding score Args: enroll_embedding (numpy.array): shape: (emb_size), enroll audio embedding test_embedding (numpy.array): shape: (emb_size), test audio embedding Returns: score: the score between enroll embedding and test embedding """ if not hasattr(self, "score_func"): self.score_func = paddle.nn.CosineSimilarity(axis=0) logger.info("create the cosine score function ") score = self.score_func( paddle.to_tensor(enroll_embedding), paddle.to_tensor(test_embedding)) return score.item() @stats_wrapper def __call__(self, audio_file: os.PathLike, model: str='ecapatdnn_voxceleb12', sample_rate: int=16000, config: os.PathLike=None, ckpt_path: os.PathLike=None, device=paddle.get_device()): """Extract the audio embedding Args: audio_file (os.PathLike): audio path, whose format must be wav and sample rate must be matched the model model (str, optional): mode type, which is been loaded from the pretrained model list. Defaults to 'ecapatdnn-voxceleb12'. sample_rate (int, optional): model sample rate. Defaults to 16000. config (os.PathLike, optional): yaml config. Defaults to None. ckpt_path (os.PathLike, optional): pretrained model path. Defaults to None. device (optional): paddle running host device. Defaults to paddle.get_device(). Returns: dict: return the audio embedding and the embedding shape """ # stage 0: check the audio format audio_file = os.path.abspath(audio_file) if not self._check(audio_file, sample_rate): sys.exit(-1) # stage 1: set the paddle runtime host device logger.info(f"device type: {device}") paddle.device.set_device(device) # stage 2: read the specific pretrained model self._init_from_path(model, sample_rate, config, ckpt_path) # stage 3: preprocess the audio and get the audio feat self.preprocess(model, audio_file) # stage 4: infer the model and get the audio embedding self.infer(model) # stage 5: process the result and set them to output dict res = self.postprocess() return res def _init_from_path(self, model_type: str='ecapatdnn_voxceleb12', sample_rate: int=16000, cfg_path: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, task=None): """Init the neural network from the model path Args: model_type (str, optional): model tag in the pretrained model list. Defaults to 'ecapatdnn_voxceleb12'. sample_rate (int, optional): model sample rate. Defaults to 16000. cfg_path (Optional[os.PathLike], optional): yaml config file path. Defaults to None. ckpt_path (Optional[os.PathLike], optional): the pretrained model path, which is stored in the disk. Defaults to None. task (str, optional): the model task type """ # stage 0: avoid to init the mode again self.task = task if hasattr(self, "model"): logger.info("Model has been initialized") return # stage 1: get the model and config path # if we want init the network from the model stored in the disk, # we must pass the config path and the ckpt model path if cfg_path is None or ckpt_path is None: # get the mode from pretrained list sample_rate_str = "16k" if sample_rate == 16000 else "8k" tag = model_type + "-" + sample_rate_str logger.info(f"load the pretrained model: {tag}") # get the model from the pretrained list # we download the pretrained model and store it in the res_path res_path = self._get_pretrained_path(tag) self.res_path = res_path self.cfg_path = os.path.join( res_path, self.pretrained_models[tag]['cfg_path']) self.ckpt_path = os.path.join( res_path, self.pretrained_models[tag]['ckpt_path'] + '.pdparams') else: # get the model from disk self.cfg_path = os.path.abspath(cfg_path) self.ckpt_path = os.path.abspath(ckpt_path + ".pdparams") self.res_path = os.path.dirname( os.path.dirname(os.path.abspath(self.cfg_path))) logger.info(f"start to read the ckpt from {self.ckpt_path}") logger.info(f"read the config from {self.cfg_path}") logger.info(f"get the res path {self.res_path}") # stage 2: read and config and init the model body self.config = CfgNode(new_allowed=True) self.config.merge_from_file(self.cfg_path) # stage 3: get the model name to instance the model network with dynamic_import logger.info("start to dynamic import the model class") model_name = model_type[:model_type.rindex('_')] logger.info(f"model name {model_name}") model_class = dynamic_import(model_name, self.model_alias) model_conf = self.config.model backbone = model_class(**model_conf) model = SpeakerIdetification( backbone=backbone, num_class=self.config.num_speakers) self.model = model self.model.eval() # stage 4: load the model parameters logger.info("start to set the model parameters to model") model_dict = paddle.load(self.ckpt_path) self.model.set_state_dict(model_dict) logger.info("create the model instance success") @paddle.no_grad() def infer(self, model_type: str): """Infer the model to get the embedding Args: model_type (str): speaker verification model type """ # stage 0: get the feat and length from _inputs feats = self._inputs["feats"] lengths = self._inputs["lengths"] logger.info("start to do backbone network model forward") logger.info( f"feats shape:{feats.shape}, lengths shape: {lengths.shape}") # stage 1: get the audio embedding # embedding from (1, emb_size, 1) -> (emb_size) embedding = self.model.backbone(feats, lengths).squeeze().numpy() logger.info(f"embedding size: {embedding.shape}") # stage 2: put the embedding and dim info to _outputs property # the embedding type is numpy.array self._outputs["embedding"] = embedding def postprocess(self) -> Union[str, os.PathLike]: """Return the audio embedding info Returns: Union[str, os.PathLike]: audio embedding info """ embedding = self._outputs["embedding"] return embedding def preprocess(self, model_type: str, input_file: Union[str, os.PathLike]): """Extract the audio feat Args: model_type (str): speaker verification model type input_file (Union[str, os.PathLike]): audio file path """ audio_file = input_file if isinstance(audio_file, (str, os.PathLike)): logger.info(f"Preprocess audio file: {audio_file}") # stage 1: load the audio sample points # Note: this process must match the training process waveform, sr = load_audio(audio_file) logger.info(f"load the audio sample points, shape is: {waveform.shape}") # stage 2: get the audio feat # Note: Now we only support fbank feature try: feat = melspectrogram( x=waveform, sr=self.config.sr, n_mels=self.config.n_mels, window_size=self.config.window_size, hop_length=self.config.hop_size) logger.info(f"extract the audio feat, shape is: {feat.shape}") except Exception as e: logger.info(f"feat occurs exception {e}") sys.exit(-1) feat = paddle.to_tensor(feat).unsqueeze(0) # in inference period, the lengths is all one without padding lengths = paddle.ones([1]) # stage 3: we do feature normalize, # Now we assume that the feat must do normalize feat = feature_normalize(feat, mean_norm=True, std_norm=False) # stage 4: store the feat and length in the _inputs, # which will be used in other function logger.info(f"feats shape: {feat.shape}") self._inputs["feats"] = feat self._inputs["lengths"] = lengths logger.info("audio extract the feat success") def _check(self, audio_file: str, sample_rate: int): """Check if the model sample match the audio sample rate Args: audio_file (str): audio file path, which will be extracted the embedding sample_rate (int): the desired model sample rate Returns: bool: return if the audio sample rate matches the model sample rate """ self.sample_rate = sample_rate if self.sample_rate != 16000 and self.sample_rate != 8000: logger.error( "invalid sample rate, please input --sr 8000 or --sr 16000") logger.error( f"The model sample rate: {self.sample_rate}, the external sample rate is: {sample_rate}" ) return False if isinstance(audio_file, (str, os.PathLike)): if not os.path.isfile(audio_file): logger.error("Please input the right audio file path") return False logger.info("checking the aduio file format......") try: audio, audio_sample_rate = soundfile.read( audio_file, dtype="float32", always_2d=True) except Exception as e: logger.exception(e) logger.error( "can not open the audio file, please check the audio file format is 'wav'. \n \ you can try to use sox to change the file format.\n \ For example: \n \ sample rate: 16k \n \ sox input_audio.xx --rate 16k --bits 16 --channels 1 output_audio.wav \n \ sample rate: 8k \n \ sox input_audio.xx --rate 8k --bits 16 --channels 1 output_audio.wav \n \ ") return False logger.info(f"The sample rate is {audio_sample_rate}") if audio_sample_rate != self.sample_rate: logger.error("The sample rate of the input file is not {}.\n \ The program will resample the wav file to {}.\n \ If the result does not meet your expectations,\n \ Please input the 16k 16 bit 1 channel wav file. \ ".format(self.sample_rate, self.sample_rate)) sys.exit(-1) else: logger.info("The audio file format is right") return True