"""External Scorer for Beam Search Decoder.""" import os import kenlm import numpy as np class Scorer(object): """External scorer to evaluate a prefix or whole sentence in beam search decoding, including the score from n-gram language model and word count. :param alpha: Parameter associated with language model. Don't use language model when alpha = 0. :type alpha: float :param beta: Parameter associated with word count. Don't use word count when beta = 0. :type beta: float :model_path: Path to load language model. :type model_path: str """ def __init__(self, alpha, beta, model_path): self._alpha = alpha self._beta = beta if not os.path.isfile(model_path): raise IOError("Invaid language model path: %s" % model_path) self._language_model = kenlm.LanguageModel(model_path) # n-gram language model scoring def _language_model_score(self, sentence): #log10 prob of last word log_cond_prob = list( self._language_model.full_scores(sentence, eos=False))[-1][0] return np.power(10, log_cond_prob) # word insertion term def _word_count(self, sentence): words = sentence.strip().split(' ') return len(words) # reset alpha and beta def reset_params(self, alpha, beta): self._alpha = alpha self._beta = beta # execute evaluation def __call__(self, sentence, log=False): """Evaluation function, gathering all the different scores and return the final one. :param sentence: The input sentence for evalutation :type sentence: str :param log: Whether return the score in log representation. :type log: bool :return: Evaluation score, in the decimal or log. :rtype: float """ lm = self._language_model_score(sentence) word_cnt = self._word_count(sentence) if log == False: score = np.power(lm, self._alpha) * np.power(word_cnt, self._beta) else: score = self._alpha * np.log(lm) + self._beta * np.log(word_cnt) return score