#!/bin/bash source path.sh gpus=0 stage=0 stop_stage=100 source ${MAIN_ROOT}/utils/parse_options.sh || exit 1 if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then python3 ${MAIN_ROOT}/paddlespeech/t2s/exps/diffsinger/gen_gta_mel.py \ --diffsinger-config=diffsinger_opencpop_ckpt_1.4.0/default.yaml \ --diffsinger-checkpoint=diffsinger_opencpop_ckpt_1.4.0/snapshot_iter_160000.pdz \ --diffsinger-stat=diffsinger_opencpop_ckpt_1.4.0/speech_stats.npy \ --diffsinger-stretch=diffsinger_opencpop_ckpt_1.4.0/speech_stretchs.npy \ --dur-file=~/datasets/Opencpop/segments/transcriptions.txt \ --output-dir=dump_finetune \ --phones-dict=diffsinger_opencpop_ckpt_1.4.0/phone_id_map.txt \ --dataset=opencpop \ --rootdir=~/datasets/Opencpop/segments/ fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then python3 ${MAIN_ROOT}/utils/link_wav.py \ --old-dump-dir=dump \ --dump-dir=dump_finetune fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # get features' stats(mean and std) echo "Get features' stats ..." cp dump/train/feats_stats.npy dump_finetune/train/ fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # normalize, dev and test should use train's stats echo "Normalize ..." python3 ${BIN_DIR}/../normalize.py \ --metadata=dump_finetune/train/raw/metadata.jsonl \ --dumpdir=dump_finetune/train/norm \ --stats=dump_finetune/train/feats_stats.npy python3 ${BIN_DIR}/../normalize.py \ --metadata=dump_finetune/dev/raw/metadata.jsonl \ --dumpdir=dump_finetune/dev/norm \ --stats=dump_finetune/train/feats_stats.npy python3 ${BIN_DIR}/../normalize.py \ --metadata=dump_finetune/test/raw/metadata.jsonl \ --dumpdir=dump_finetune/test/norm \ --stats=dump_finetune/train/feats_stats.npy fi # create finetune env if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then echo "create finetune env" python3 local/prepare_env.py \ --pretrained_model_dir=exp/default/checkpoints/ \ --output_dir=exp/finetune/ fi # finetune if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then CUDA_VISIBLE_DEVICES=${gpus} \ FLAGS_cudnn_exhaustive_search=true \ FLAGS_conv_workspace_size_limit=4000 \ python ${BIN_DIR}/train.py \ --train-metadata=dump_finetune/train/norm/metadata.jsonl \ --dev-metadata=dump_finetune/dev/norm/metadata.jsonl \ --config=conf/finetune.yaml \ --output-dir=exp/finetune \ --ngpu=1 fi