# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddlespeech.audiotools.core.audio_signal import AudioSignal from paddlespeech.t2s.modules.losses import GANLoss from paddlespeech.t2s.modules.losses import MultiScaleSTFTLoss from paddlespeech.t2s.modules.losses import SISDRLoss def get_input(): x = AudioSignal("https://paddlespeech.cdn.bcebos.com/PaddleAudio/en.wav", 2_05) y = x * 0.01 return x, y def test_multi_scale_stft_loss(): x, y = get_input() loss = MultiScaleSTFTLoss() pd_loss = loss(x, y) assert np.abs(pd_loss.numpy() - 7.562150) < 1e-06 def test_sisdr_loss(): x, y = get_input() loss = SISDRLoss() pd_loss = loss(x, y) assert np.abs(pd_loss.numpy() - (-145.377640)) < 1e-06 def test_gan_loss(): class My_discriminator0: def __call__(self, x): return x.sum() class My_discriminator1: def __call__(self, x): return x * (-0.2) x, y = get_input() loss = GANLoss(My_discriminator0()) pd_loss0, pd_loss1 = loss(x, y) assert np.abs(pd_loss0.numpy() - (-0.102722)) < 1e-06 assert np.abs(pd_loss1.numpy() - (-0.001027)) < 1e-06 loss = GANLoss(My_discriminator1()) pd_loss0, _ = loss.generator_loss(x, y) assert np.abs(pd_loss0.numpy() - 1.000199) < 1e-06 pd_loss = loss.discriminator_loss(x, y) assert np.abs(pd_loss.numpy() - 1.000200) < 1e-06