#!/bin/bash set -e data=data exp=exp nj=20 . utils/parse_options.sh mkdir -p $exp ckpt_dir=./data/model model_dir=$ckpt_dir/asr1_chunk_conformer_u2pp_wenetspeech_static_1.3.0.model/ aishell_wav_scp=aishell_test.scp text=$data/test/text ./local/split_data.sh $data $data/$aishell_wav_scp $aishell_wav_scp $nj lang_dir=./data/lang_test/ graph=$lang_dir/TLG.fst word_table=$lang_dir/words.txt if [ ! -f $graph ]; then # download ngram, if you want to make graph by yourself, please refer local/run_build_tlg.sh mkdir -p $lang_dir pushd $lang_dir wget -c https://paddlespeech.cdn.bcebos.com/speechx/examples/ngram/zh/tlg.zip unzip tlg.zip popd fi utils/run.pl JOB=1:$nj $data/split${nj}/JOB/recognizer_wfst.log \ recognizer_main \ --use_fbank=true \ --num_bins=80 \ --cmvn_file=$model_dir/mean_std.json \ --model_path=$model_dir/export.jit \ --graph_path=$lang_dir/TLG.fst \ --word_symbol_table=$word_table \ --nnet_decoder_chunk=16 \ --receptive_field_length=7 \ --subsampling_rate=4 \ --wav_rspecifier=scp:$data/split${nj}/JOB/${aishell_wav_scp} \ --rescoring_weight=0.0 \ --acoustic_scale=2 \ --result_wspecifier=ark,t:$data/split${nj}/JOB/result_recognizer_wfst.ark cat $data/split${nj}/*/result_recognizer_wfst.ark > $exp/aishell_recognizer_wfst utils/compute-wer.py --char=1 --v=1 $text $exp/aishell_recognizer_wfst > $exp/aishell.recognizer_wfst.err echo "recognizer test have finished!!!" echo "please checkout in $exp/aishell.recognizer_wfst.err" tail -n 7 $exp/aishell.recognizer_wfst.err