import paddle import paddle.nn as nn import paddle.nn.functional as F from typing import Optional, List, Tuple import math def _mha_shape_check(query: paddle.Tensor, key: paddle.Tensor, value: paddle.Tensor, key_padding_mask: Optional[paddle.Tensor], attn_mask: Optional[paddle.Tensor], num_heads: int): # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask` # and returns if the input is batched or not. # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor. # Shape check. if query.dim() == 3: # Batched Inputs is_batched = True assert key.dim() == 3 and value.dim() == 3, \ ("For batched (3-D) `query`, expected `key` and `value` to be 3-D" f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") if key_padding_mask is not None: assert key_padding_mask.dim() == 2, \ ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D" f" but found {key_padding_mask.dim()}-D tensor instead") if attn_mask is not None: assert attn_mask.dim() in (2, 3), \ ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" f" but found {attn_mask.dim()}-D tensor instead") elif query.dim() == 2: # Unbatched Inputs is_batched = False assert key.dim() == 2 and value.dim() == 2, \ ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D" f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") if key_padding_mask is not None: assert key_padding_mask.dim() == 1, \ ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D" f" but found {key_padding_mask.dim()}-D tensor instead") if attn_mask is not None: assert attn_mask.dim() in (2, 3), \ ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" f" but found {attn_mask.dim()}-D tensor instead") if attn_mask.dim() == 3: expected_shape = (num_heads, query.shape[0], key.shape[0]) assert attn_mask.shape == expected_shape, \ (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}") else: raise AssertionError( f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor") def scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal): """ Scaled Dot-Product Attention """ d_key = k.shape[-1] scaled_q = paddle.scale(x=q, scale=d_key ** -0.5) product = paddle.matmul(x=scaled_q, y=k, transpose_y=True) weights = F.softmax(x=product + attn_mask) if dropout_p: weights = F.dropout( weights, p=dropout_p, training=True, mode="upscale_in_train" ) out = paddle.matmul(x=weights, y=v) return out def addr(input, vec1, vec2, beta=1, alpha=1, out=None): """ A helper function to calculate alpha*(vec1*vec2^T) + beta*input """ row = vec1.shape[0] column = vec2.shape[0] vec1 = paddle.unsqueeze(vec1, 0) vec1 = paddle.transpose(vec1, [1, 0]) vec1 = paddle.expand(vec1, [row, column]) new_vec2 = paddle.zeros([column, column], dtype=vec2.dtype) new_vec2[0, :] = vec2 out = alpha * paddle.matmul(vec1, new_vec2) out = beta * input + out return out def multi_head_attention_forward( x: paddle.Tensor, num_heads: int, q_proj: nn.Linear, k_proj: nn.Linear, v_proj: nn.Linear, c_proj: nn.Linear, attn_mask: Optional[paddle.Tensor] = None, ): max_len, batch_size, emb_dim = x.shape head_dim = emb_dim // num_heads scaling = float(head_dim) ** -0.5 q = q_proj(x) # L, N, E k = k_proj(x) # L, N, E v = v_proj(x) # L, N, E v = v.reshape((-1, batch_size * num_heads, head_dim)).transpose((1, 0, 2)) k = k.reshape((-1, batch_size * num_heads, head_dim)).transpose((1, 0, 2)) q = q.reshape((-1, batch_size * num_heads, head_dim)).transpose((1, 0, 2)) q = q * scaling qk = paddle.matmul(q, k, transpose_y=True) if attn_mask is not None: if attn_mask.ndim == 2: attn_mask.unsqueeze_(0) assert attn_mask.shape[0] == 1 and attn_mask.shape[1] == max_len and attn_mask.shape[2] == max_len qk += attn_mask qk = F.softmax(qk, axis=-1) atten = paddle.bmm(qk, v) atten = atten.transpose((1, 0, 2)) atten = atten.reshape((max_len, batch_size, emb_dim)) atten = c_proj(atten) return atten def linear(input, weight, bias=None): # compute y = x A^T + b # Input: (N, in_feature) paddle tensor # weight: (out_feature, in_feature) paddle tensor # bias: (out_feature) paddle tensor if input.dim() == 2 and bias is not None: # fused op is marginally faster return paddle.addmm(bias, input, weight) output = paddle.matmul(input, weight) if bias is not None: output += bias return output def _in_projection_packed( q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, w: paddle.Tensor, b: Optional[paddle.Tensor] = None, ) -> List[paddle.Tensor]: r""" Performs the in-projection step of the attention operation, using packed weights. Output is a triple containing projection tensors for query, key and value. Args: q, k, v: query, key and value tensors to be projected. For self-attention, these are typically the same tensor; for encoder-decoder attention, k and v are typically the same tensor. (We take advantage of these identities for performance if they are present.) Regardless, q, k and v must share a common embedding dimension; otherwise their shapes may vary. w: projection weights for q, k and v, packed into a single tensor. Weights are packed along dimension 0, in q, k, v order. b: optional projection biases for q, k and v, packed into a single tensor in q, k, v order. Shape: Inputs: - q: :math:`(..., E)` where E is the embedding dimension - k: :math:`(..., E)` where E is the embedding dimension - v: :math:`(..., E)` where E is the embedding dimension - w: :math:`(E * 3, E)` where E is the embedding dimension - b: :math:`E * 3` where E is the embedding dimension Output: - in output list :math:`[q', k', v']`, each output tensor will have the same shape as the corresponding input tensor. """ E = q.shape[-1] if k is v: if q is k: # self-attention proj = F.linear(q, w, b) # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk() proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose([2, 1, 0]).squeeze(-2).contiguous() return proj[0], proj[1], proj[2] else: # encoder-decoder attention w_q, w_kv = w.split([E, E * 2]) if b is None: b_q = b_kv = None else: b_q, b_kv = b.split([E, E * 2]) q_proj = F.linear(q, w_q, b_q) kv_proj = F.linear(k, w_kv, b_kv) # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk() kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose([2, 1, 0]).squeeze(-2).contiguous() return (q_proj, kv_proj[0], kv_proj[1]) else: w_q, w_k, w_v = w.chunk(3) if b is None: b_q = b_k = b_v = None else: b_q, b_k, b_v = b.chunk(3) return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) def _in_projection( q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, w_q: paddle.Tensor, w_k: paddle.Tensor, w_v: paddle.Tensor, b_q: Optional[paddle.Tensor] = None, b_k: Optional[paddle.Tensor] = None, b_v: Optional[paddle.Tensor] = None, ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: A, B, C = F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) return A, B, C def multi_head_attention_forward_paddle( query: paddle.Tensor, key: paddle.Tensor, value: paddle.Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Optional[paddle.Tensor], in_proj_bias: Optional[paddle.Tensor], bias_k: Optional[paddle.Tensor], bias_v: Optional[paddle.Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: paddle.Tensor, out_proj_bias: Optional[paddle.Tensor], training: bool = True, key_padding_mask: Optional[paddle.Tensor] = None, need_weights: bool = True, attn_mask: Optional[paddle.Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[paddle.Tensor] = None, k_proj_weight: Optional[paddle.Tensor] = None, v_proj_weight: Optional[paddle.Tensor] = None, static_k: Optional[paddle.Tensor] = None, static_v: Optional[paddle.Tensor] = None, average_attn_weights: bool = True, is_causal: bool = False, ) -> Tuple[paddle.Tensor, Optional[paddle.Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. is_causal: If specified, applies a causal mask as attention mask, and ignores attn_mask for computing scaled dot product attention. Default: ``False``. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect when ``need_weights=True.``. Default: True Shape: Inputs: - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length. If a FloatTensor is provided, it will be directly added to the value. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`. """ is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads) tgt_len, bsz, embed_dim = query.shape src_len, _, _ = key.shape if is_causal: attn_mask = None assert embed_dim == embed_dim_to_check, \ f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}" if isinstance(embed_dim, paddle.Tensor): # embed_dim can be a tensor when JIT tracing head_dim = embed_dim.div(num_heads, rounding_mode='trunc') else: head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}" if use_separate_proj_weight: # allow MHA to have different embedding dimensions when separate projection weights are used assert key.shape[:2] == value.shape[:2], \ f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}" else: assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}" # # compute in-projection # if not use_separate_proj_weight: assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None" q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias) else: assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None" assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None" assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None" if in_proj_bias is None: b_q = b_k = b_v = None else: b_q, b_k, b_v = in_proj_bias.chunk(3) q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v) # prep attention mask if attn_mask is not None: # ensure attn_mask's dim is 3 if attn_mask.dim() == 2: correct_2d_size = (tgt_len, src_len) if attn_mask.shape != correct_2d_size: raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.") attn_mask = attn_mask.unsqueeze(0) elif attn_mask.dim() == 3: correct_3d_size = (bsz * num_heads, tgt_len, src_len) if tuple(attn_mask.shape) != correct_3d_size: raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.") else: raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported") # add bias along batch dimension (currently second) if bias_k is not None and bias_v is not None: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." k = paddle.concat([k, bias_k.repeat(1, bsz, 1)], axis=1) v = paddle.concat([v, bias_v.repeat(1, bsz, 1)], axis=1) if attn_mask is not None: # attn_mask = pad(attn_mask, (0, 1)) # pad last dim with 0 on one side and 1 on the other attn_mask = paddle.concat([attn_mask, paddle.zeros_like(attn_mask[:, :, -1:])], axis=2) if key_padding_mask is not None: # key_padding_mask = pad(key_padding_mask, (0, 1)) # pad last dim with 0 on one side and 1 on the other key_padding_mask = paddle.concat([key_padding_mask, paddle.zeros_like(key_padding_mask[:, -1:])], axis=1) else: assert bias_k is None assert bias_v is None # # reshape q, k, v for multihead attention and make em batch first # q = q.reshape([tgt_len, bsz * num_heads, head_dim]).transpose([1, 0, 2]) if static_k is None: k = k.reshape([k.shape[0], bsz * num_heads, head_dim]).transpose([1, 0, 2]) else: assert static_k.size(0) == bsz * num_heads, \ f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}" assert static_k.size(2) == head_dim, \ f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}" k = static_k if static_v is None: v = v.reshape([v.shape[0], bsz * num_heads, head_dim]).transpose([1, 0, 2]) else: # TODO finish disentangling control flow so we don't do in-projections when statics are passed assert static_v.size(0) == bsz * num_heads, \ f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}" assert static_v.size(2) == head_dim, \ f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}" v = static_v # add zero attention along batch dimension (now first) if add_zero_attn: zero_attn_shape = (bsz * num_heads, 1, head_dim) k = paddle.concat([k, paddle.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], axis=1) v = paddle.concat([v, paddle.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], axis=1) if attn_mask is not None: # attn_mask = pad(attn_mask, (0, 1)) attn_mask = paddle.concat([attn_mask, paddle.zeros_like(attn_mask[:, :, -1:])], axis=2) if key_padding_mask is not None: # key_padding_mask = pad(key_padding_mask, (0, 1)) key_padding_mask = paddle.concat([key_padding_mask, paddle.zeros_like(key_padding_mask[:, -1:])], axis=1) # update source sequence length after adjustments src_len = k.shape[1] # merge key padding and attention masks if key_padding_mask is not None: assert key_padding_mask.shape == (bsz, src_len), \ f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}" key_padding_mask = key_padding_mask.reshape([bsz, 1, 1, src_len]).expand([-1, num_heads, -1, -1]).reshape([bsz * num_heads, 1, src_len]) if attn_mask is None: attn_mask = key_padding_mask else: attn_mask = attn_mask + key_padding_mask # adjust dropout probability if not training: dropout_p = 0.0 # # (deep breath) calculate attention and out projection # if need_weights: B, Nt, E = q.shape q_scaled = q / math.sqrt(E) if attn_mask is not None: attn_output_weights = addr(q_scaled, k.transpose(-2, -1)) else: attn_output_weights = paddle.bmm(q_scaled, k.transpose(0, 2, 1)) attn_output_weights = F.softmax(attn_output_weights, axis=-1) if dropout_p > 0.0: attn_output_weights = F.dropout(attn_output_weights, p=dropout_p) attn_output = paddle.bmm(attn_output_weights, v) attn_output = attn_output.transpose([1, 0, 2]).reshape([tgt_len * bsz, embed_dim]) # attn_output = linear(attn_output, out_proj_weight, out_proj_bias) attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias) attn_output = attn_output.reshape([tgt_len, bsz, attn_output.shape[1]]) # optionally average attention weights over heads attn_output_weights = attn_output_weights.reshape([bsz, num_heads, tgt_len, src_len]) if average_attn_weights: attn_output_weights = attn_output_weights.mean(dim=1) if not is_batched: # squeeze the output if input was unbatched attn_output = attn_output.squeeze(1) attn_output_weights = attn_output_weights.squeeze(0) return attn_output, attn_output_weights else: # attn_mask can be either (L,S) or (N*num_heads, L, S) # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S) # in order to match the input for SDPA of (N, num_heads, L, S) if attn_mask is not None: if attn_mask.shape[0] == 1 and attn_mask.dim() == 3: attn_mask = attn_mask.unsqueeze(0) else: attn_mask = attn_mask.reshape([bsz, num_heads, -1, src_len]) q = q.reshape([bsz, num_heads, tgt_len, head_dim]) k = k.reshape([bsz, num_heads, src_len, head_dim]) v = v.reshape([bsz, num_heads, src_len, head_dim]) attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal) attn_output = attn_output.transpose(perm=[2, 0, 1, 3]).reshape([bsz * tgt_len, embed_dim]) attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias) attn_output = attn_output.reshape([tgt_len, bsz, attn_output.shape[1]]) return attn_output, None