#!/bin/bash set -e source path.sh gpus=0,1 stage=0 stop_stage=100 conf_path=conf/default.yaml train_output_path=exp/default ckpt_name=snapshot_iter_153.pdz # with the following command, you can choose the stage range you want to run # such as `./run.sh --stage 0 --stop-stage 0` # this can not be mixed use with `$1`, `$2` ... source ${MAIN_ROOT}/utils/parse_options.sh || exit 1 if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # prepare data ./local/preprocess.sh ${conf_path} || exit -1 fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # train model, all `ckpt` under `train_output_path/checkpoints/` dir CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1 fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # synthesize, vocoder is pwgan by default CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1 fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # synthesize_e2e, vocoder is pwgan by default CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1 fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # inference with static model, vocoder is pwgan by default CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1 fi # paddle2onnx, please make sure the static models are in ${train_output_path}/inference first # we have only tested the following models so far if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # install paddle2onnx pip install paddle2onnx --upgrade ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_csmsc # considering the balance between speed and quality, we recommend that you use hifigan as vocoder ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx pwgan_csmsc # ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx mb_melgan_csmsc # ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx hifigan_csmsc fi # inference with onnxruntime if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then ./local/ort_predict.sh ${train_output_path} fi # must run after stage 3 (which stage generated static models) if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then # NOTE by yuantian 2022.11.21: please compile develop version of Paddle-Lite to export and run TTS models, # cause TTS models are supported by https://github.com/PaddlePaddle/Paddle-Lite/pull/9587 # and https://github.com/PaddlePaddle/Paddle-Lite/pull/9706 ./local/export2lite.sh ${train_output_path} inference pdlite fastspeech2_csmsc x86 ./local/export2lite.sh ${train_output_path} inference pdlite pwgan_csmsc x86 # ./local/export2lite.sh ${train_output_path} inference pdlite mb_melgan_csmsc x86 # ./local/export2lite.sh ${train_output_path} inference pdlite hifigan_csmsc x86 fi if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then CUDA_VISIBLE_DEVICES=${gpus} ./local/lite_predict.sh ${train_output_path} || exit -1 fi # PTQ_dynamic if [ ${stage} -le 9 ] && [ ${stop_stage} -ge 9 ]; then ./local/PTQ_dynamic.sh ${train_output_path} fastspeech2_csmsc 8 # ./local/PTQ_dynamic.sh ${train_output_path} pwgan_csmsc 8 # ./local/PTQ_dynamic.sh ${train_output_path} mb_melgan_csmsc 8 # ./local/PTQ_dynamic.sh ${train_output_path} hifigan_csmsc 8 fi # PTQ_static if [ ${stage} -le 10 ] && [ ${stop_stage} -ge 10 ]; then CUDA_VISIBLE_DEVICES=${gpus} ./local/PTQ_static.sh ${train_output_path} fastspeech2_csmsc || exit -1 fi