(简体中文|[English](./README.md)) # 用 CSMSC 数据集训练 FastSpeech2 模型 本用例包含用于训练 [Fastspeech2](https://arxiv.org/abs/2006.04558) 模型的代码,使用 [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html) 数据集。 ## 数据集 ### 下载并解压 从 [官方网站](https://test.data-baker.com/data/index/TNtts/) 下载数据集 ### 获取MFA结果并解压 我们使用 [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) 去获得 fastspeech2 的音素持续时间。 你们可以从这里下载 [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), 或参考 [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) 训练你自己的模型。 ## 开始 假设数据集的路径是 `~/datasets/BZNSYP`. 假设CSMSC的MFA结果路径为 `./baker_alignment_tone`. 运行下面的命令会进行如下操作: 1. **设置原路径**。 2. 对数据集进行预处理。 3. 训练模型 4. 合成波形 - 从 `metadata.jsonl` 合成波形。 - 从文本文件合成波形。 5. 使用静态模型进行推理。 ```bash ./run.sh ``` 您可以选择要运行的一系列阶段,或者将 `stage` 设置为 `stop-stage` 以仅使用一个阶段,例如,运行以下命令只会预处理数据集。 ```bash ./run.sh --stage 0 --stop-stage 0 ``` ### 数据预处理 ```bash ./local/preprocess.sh ${conf_path} ``` 当它完成时。将在当前目录中创建 `dump` 文件夹。转储文件夹的结构如下所示。 ```text dump ├── dev │ ├── norm │ └── raw ├── phone_id_map.txt ├── speaker_id_map.txt ├── test │ ├── norm │ └── raw └── train ├── energy_stats.npy ├── norm ├── pitch_stats.npy ├── raw └── speech_stats.npy ``` 数据集分为三个部分,即 `train` 、 `dev` 和 `test` ,每个部分都包含一个 `norm` 和 `raw` 子文件夹。原始文件夹包含每个话语的语音、音调和能量特征,而 `norm` 文件夹包含规范化的特征。用于规范化特征的统计数据是从 `dump/train/*_stats.npy` 中的训练集计算出来的。 此外,还有一个 `metadata.jsonl` 在每个子文件夹中。它是一个类似表格的文件,包含音素、文本长度、语音长度、持续时间、语音特征路径、音调特征路径、能量特征路径、说话人和每个话语的 id。 ### 模型训练 ```bash CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} ``` `./local/train.sh` 调用 `${BIN_DIR}/train.py` 。 以下是完整的帮助信息。 ```text usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA] [--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR] [--ngpu NGPU] [--phones-dict PHONES_DICT] [--speaker-dict SPEAKER_DICT] [--voice-cloning VOICE_CLONING] Train a FastSpeech2 model. optional arguments: -h, --help show this help message and exit --config CONFIG fastspeech2 config file. --train-metadata TRAIN_METADATA training data. --dev-metadata DEV_METADATA dev data. --output-dir OUTPUT_DIR output dir. --ngpu NGPU if ngpu=0, use cpu. --phones-dict PHONES_DICT phone vocabulary file. --speaker-dict SPEAKER_DICT speaker id map file for multiple speaker model. --voice-cloning VOICE_CLONING whether training voice cloning model. ``` 1. `--config` 是一个 yaml 格式的配置文件,用于覆盖默认配置,位于 `conf/default.yaml`. 2. `--train-metadata` 和 `--dev-metadata` 应为 `dump` 文件夹中 `train` 和 `dev` 下的规范化元数据文件 3. `--output-dir` 是保存结果的目录。 检查点保存在此目录中的 `checkpoints/` 目录下。 4. `--ngpu` 要使用的 GPU 数,如果 ngpu==0,则使用 cpu 。 5. `--phones-dict` 是音素词汇表文件的路径。 ### 合成 我们使用 [parallel wavegan](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc1) 作为神经声码器(vocoder)。 从 [pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip) 下载预训练的 parallel wavegan 模型并将其解压。 ```bash unzip pwg_baker_ckpt_0.4.zip ``` Parallel WaveGAN 检查点包含如下文件。 ```text pwg_baker_ckpt_0.4 ├── pwg_default.yaml # 用于训练 parallel wavegan 的默认配置 ├── pwg_snapshot_iter_400000.pdz # parallel wavegan 的模型参数 └── pwg_stats.npy # 训练平行波形时用于规范化谱图的统计数据 ``` `./local/synthesize.sh` 调用 `${BIN_DIR}/../synthesize.py` 即可从 `metadata.jsonl`中合成波形。 ```bash CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} ``` ```text usage: synthesize.py [-h] [--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,tacotron2_aishell3}] [--am_config AM_CONFIG] [--am_ckpt AM_CKPT] [--am_stat AM_STAT] [--phones_dict PHONES_DICT] [--tones_dict TONES_DICT] [--speaker_dict SPEAKER_DICT] [--voice-cloning VOICE_CLONING] [--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,wavernn_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,style_melgan_csmsc}] [--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT] [--voc_stat VOC_STAT] [--ngpu NGPU] [--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR] Synthesize with acoustic model & vocoder optional arguments: -h, --help show this help message and exit --am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,tacotron2_aishell3} Choose acoustic model type of tts task. --am_config AM_CONFIG Config of acoustic model. --am_ckpt AM_CKPT Checkpoint file of acoustic model. --am_stat AM_STAT mean and standard deviation used to normalize spectrogram when training acoustic model. --phones_dict PHONES_DICT phone vocabulary file. --tones_dict TONES_DICT tone vocabulary file. --speaker_dict SPEAKER_DICT speaker id map file. --voice-cloning VOICE_CLONING whether training voice cloning model. --voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,wavernn_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,style_melgan_csmsc} Choose vocoder type of tts task. --voc_config VOC_CONFIG Config of voc. --voc_ckpt VOC_CKPT Checkpoint file of voc. --voc_stat VOC_STAT mean and standard deviation used to normalize spectrogram when training voc. --ngpu NGPU if ngpu == 0, use cpu. --test_metadata TEST_METADATA test metadata. --output_dir OUTPUT_DIR output dir. ``` `./local/synthesize_e2e.sh` 调用 `${BIN_DIR}/../synthesize_e2e.py`,即可从文本文件中合成波形。 ```bash CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} ``` ```text usage: synthesize_e2e.py [-h] [--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech}] [--am_config AM_CONFIG] [--am_ckpt AM_CKPT] [--am_stat AM_STAT] [--phones_dict PHONES_DICT] [--tones_dict TONES_DICT] [--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID] [--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}] [--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT] [--voc_stat VOC_STAT] [--lang LANG] [--inference_dir INFERENCE_DIR] [--ngpu NGPU] [--text TEXT] [--output_dir OUTPUT_DIR] Synthesize with acoustic model & vocoder optional arguments: -h, --help show this help message and exit --am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech} Choose acoustic model type of tts task. --am_config AM_CONFIG Config of acoustic model. --am_ckpt AM_CKPT Checkpoint file of acoustic model. --am_stat AM_STAT mean and standard deviation used to normalize spectrogram when training acoustic model. --phones_dict PHONES_DICT phone vocabulary file. --tones_dict TONES_DICT tone vocabulary file. --speaker_dict SPEAKER_DICT speaker id map file. --spk_id SPK_ID spk id for multi speaker acoustic model --voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc} Choose vocoder type of tts task. --voc_config VOC_CONFIG Config of voc. --voc_ckpt VOC_CKPT Checkpoint file of voc. --voc_stat VOC_STAT mean and standard deviation used to normalize spectrogram when training voc. --lang LANG Choose model language. zh or en --inference_dir INFERENCE_DIR dir to save inference models --ngpu NGPU if ngpu == 0, use cpu. --text TEXT text to synthesize, a 'utt_id sentence' pair per line. --output_dir OUTPUT_DIR output dir. ``` 1. `--am` 声学模型格式是否符合 {model_name}_{dataset} 2. `--am_config`, `--am_ckpt`, `--am_stat` 和 `--phones_dict` 是声学模型的参数,对应于 fastspeech2 预训练模型中的 4 个文件。 3. `--voc` 声码器(vocoder)格式是否符合 {model_name}_{dataset} 4. `--voc_config`, `--voc_ckpt`, `--voc_stat` 是声码器的参数,对应于 parallel wavegan 预训练模型中的 3 个文件。 5. `--lang` 对应模型的语言可以是 `zh` 或 `en` 。 6. `--test_metadata` 应为 `dump` 文件夹中 `test` 下的规范化元数据文件、 7. `--text` 是文本文件,其中包含要合成的句子。 8. `--output_dir` 是保存合成音频文件的目录。 9. `--ngpu` 要使用的GPU数,如果 ngpu==0,则使用 cpu 。 ### 推理 在合成之后,我们将在 `${train_output_path}/inference` 中得到 fastspeech2 和 pwgan 的静态模型 `./local/inference.sh` 调用 `${BIN_DIR}/inference.py` 为 fastspeech2 + pwgan 综合提供了一个 paddle 静态模型推理示例。 ```bash CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} ``` ## 预训练模型 预先训练的 FastSpeech2 模型,在音频边缘没有空白音频: - [fastspeech2_nosil_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_ckpt_0.4.zip) - [fastspeech2_conformer_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip) 静态模型可以在这里下载 [fastspeech2_nosil_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_static_0.4.zip). Model | Step | eval/loss | eval/l1_loss | eval/duration_loss | eval/pitch_loss| eval/energy_loss :-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------: default| 2(gpu) x 76000|1.0991|0.59132|0.035815|0.31915|0.15287| conformer| 2(gpu) x 76000|1.0675|0.56103|0.035869|0.31553|0.15509| FastSpeech2检查点包含下列文件。 ```text fastspeech2_nosil_baker_ckpt_0.4 ├── default.yaml # 用于训练 fastspeech2 的默认配置 ├── phone_id_map.txt # 训练 fastspeech2 时的音素词汇文件 ├── snapshot_iter_76000.pdz # 模型参数和优化器状态 └── speech_stats.npy # 训练 fastspeech2 时用于规范化频谱图的统计数据 ``` 您可以使用以下脚本通过使用预训练的 fastspeech2 和 parallel wavegan 模型为 `${BIN_DIR}/../../assets/sentences.txt` 合成句子 ```bash source path.sh FLAGS_allocator_strategy=naive_best_fit \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python3 ${BIN_DIR}/../synthesize_e2e.py \ --am=fastspeech2_csmsc \ --am_config=fastspeech2_nosil_baker_ckpt_0.4/default.yaml \ --am_ckpt=fastspeech2_nosil_baker_ckpt_0.4/snapshot_iter_76000.pdz \ --am_stat=fastspeech2_nosil_baker_ckpt_0.4/speech_stats.npy \ --voc=pwgan_csmsc \ --voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \ --voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \ --voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \ --lang=zh \ --text=${BIN_DIR}/../../assets/sentences.txt \ --output_dir=exp/default/test_e2e \ --inference_dir=exp/default/inference \ --phones_dict=fastspeech2_nosil_baker_ckpt_0.4/phone_id_map.txt ```