diff --git a/paddlespeech/s2t/modules/attention.py b/paddlespeech/s2t/modules/attention.py index 67bb869ed..2166ca8bf 100644 --- a/paddlespeech/s2t/modules/attention.py +++ b/paddlespeech/s2t/modules/attention.py @@ -20,6 +20,7 @@ from typing import Tuple import paddle from paddle import nn from paddle.nn import initializer as I +from paddle.nn import functional as F from paddlespeech.s2t.modules.align import Linear from paddlespeech.s2t.utils.log import Log @@ -45,6 +46,7 @@ class MultiHeadedAttention(nn.Layer): """ super().__init__() assert n_feat % n_head == 0 + self.n_feat = n_feat # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head @@ -54,6 +56,15 @@ class MultiHeadedAttention(nn.Layer): self.linear_out = Linear(n_feat, n_feat) self.dropout = nn.Dropout(p=dropout_rate) + + def _build_once(self, *args, **kwargs): + super()._build_once(*args, **kwargs) + # if self.self_att: + # self.linear_kv = Linear(self.n_feat, self.n_feat*2) + self.weight = paddle.concat([self.linear_k.weight, self.linear_v.weight], axis=-1) + self.bias = paddle.concat([self.linear_k.bias, self.linear_v.bias]) + self._built = True + def forward_qkv(self, query: paddle.Tensor, key: paddle.Tensor, @@ -73,9 +84,12 @@ class MultiHeadedAttention(nn.Layer): (#batch, n_head, time2, d_k). """ n_batch = query.shape[0] + q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) - k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) - v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) + # k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) + # v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) + k, v = F.linear(key, self.weight, self.bias).view(n_batch, -1, 2 * self.h, self.d_k).split(2, axis=2) + q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k) k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k) v = v.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k) @@ -108,10 +122,10 @@ class MultiHeadedAttention(nn.Layer): # When will `if mask.size(2) > 0` be False? # 1. onnx(16/-1, -1/-1, 16/0) # 2. jit (16/-1, -1/-1, 16/0, 16/4) - if paddle.shape(mask)[2] > 0: # time2 > 0 + if mask.shape[2] > 0: # time2 > 0 mask = mask.unsqueeze(1).equal(0) # (batch, 1, *, time2) # for last chunk, time2 might be larger than scores.size(-1) - mask = mask[:, :, :, :paddle.shape(scores)[-1]] + mask = mask[:, :, :, :scores.shape[-1]] scores = scores.masked_fill(mask, -float('inf')) attn = paddle.softmax( scores, axis=-1).masked_fill(mask, @@ -179,7 +193,7 @@ class MultiHeadedAttention(nn.Layer): # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True - if paddle.shape(cache)[0] > 0: + if cache.shape[0] > 0: # last dim `d_k * 2` for (key, val) key_cache, value_cache = paddle.split(cache, 2, axis=-1) k = paddle.concat([key_cache, k], axis=2) @@ -288,7 +302,7 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention): # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True - if paddle.shape(cache)[0] > 0: + if cache.shape[0] > 0: # last dim `d_k * 2` for (key, val) key_cache, value_cache = paddle.split(cache, 2, axis=-1) k = paddle.concat([key_cache, k], axis=2)