Merge branch 'develop' of https://github.com/lym0302/PaddleSpeech into paddlespeech_stats
commit
fe6be4a65e
@ -1,7 +1,8 @@
|
||||
model: 'conformer_wenetspeech'
|
||||
lang: 'zh'
|
||||
sample_rate: 16000
|
||||
cfg_path:
|
||||
ckpt_path:
|
||||
cfg_path: # [optional]
|
||||
ckpt_path: # [optional]
|
||||
decode_method: 'attention_rescoring'
|
||||
force_yes: False
|
||||
force_yes: True
|
||||
device: 'gpu:3' # set 'gpu:id' or 'cpu'
|
||||
|
@ -0,0 +1,25 @@
|
||||
# This is the parameter configuration file for ASR server.
|
||||
# These are the static models that support paddle inference.
|
||||
|
||||
##################################################################
|
||||
# ACOUSTIC MODEL SETTING #
|
||||
# am choices=['deepspeech2offline_aishell'] TODO
|
||||
##################################################################
|
||||
model_type: 'deepspeech2offline_aishell'
|
||||
am_model: # the pdmodel file of am static model [optional]
|
||||
am_params: # the pdiparams file of am static model [optional]
|
||||
lang: 'zh'
|
||||
sample_rate: 16000
|
||||
cfg_path:
|
||||
decode_method:
|
||||
force_yes: True
|
||||
|
||||
am_predictor_conf:
|
||||
device: 'gpu:3' # set 'gpu:id' or 'cpu'
|
||||
enable_mkldnn: True
|
||||
switch_ir_optim: True
|
||||
|
||||
|
||||
##################################################################
|
||||
# OTHERS #
|
||||
##################################################################
|
@ -1,7 +1,8 @@
|
||||
model: 'conformer_wenetspeech'
|
||||
lang: 'zh'
|
||||
sample_rate: 16000
|
||||
cfg_path:
|
||||
ckpt_path:
|
||||
cfg_path: # [optional]
|
||||
ckpt_path: # [optional]
|
||||
decode_method: 'attention_rescoring'
|
||||
force_yes: False
|
||||
force_yes: True
|
||||
device: 'gpu:3' # set 'gpu:id' or 'cpu'
|
||||
|
@ -0,0 +1,25 @@
|
||||
# This is the parameter configuration file for ASR server.
|
||||
# These are the static models that support paddle inference.
|
||||
|
||||
##################################################################
|
||||
# ACOUSTIC MODEL SETTING #
|
||||
# am choices=['deepspeech2offline_aishell'] TODO
|
||||
##################################################################
|
||||
model_type: 'deepspeech2offline_aishell'
|
||||
am_model: # the pdmodel file of am static model [optional]
|
||||
am_params: # the pdiparams file of am static model [optional]
|
||||
lang: 'zh'
|
||||
sample_rate: 16000
|
||||
cfg_path:
|
||||
decode_method:
|
||||
force_yes: True
|
||||
|
||||
am_predictor_conf:
|
||||
device: 'gpu:3' # set 'gpu:id' or 'cpu'
|
||||
enable_mkldnn: True
|
||||
switch_ir_optim: True
|
||||
|
||||
|
||||
##################################################################
|
||||
# OTHERS #
|
||||
##################################################################
|
@ -0,0 +1,13 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
@ -0,0 +1,244 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
import os
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Union
|
||||
|
||||
import librosa
|
||||
import paddle
|
||||
import soundfile
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.cli.utils import MODEL_HOME
|
||||
from paddlespeech.s2t.modules.ctc import CTCDecoder
|
||||
from paddlespeech.cli.asr.infer import ASRExecutor
|
||||
from paddlespeech.cli.log import logger
|
||||
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
||||
from paddlespeech.s2t.transform.transformation import Transformation
|
||||
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
||||
from paddlespeech.s2t.utils.utility import UpdateConfig
|
||||
from paddlespeech.server.utils.config import get_config
|
||||
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
||||
from paddlespeech.server.utils.paddle_predictor import run_model
|
||||
from paddlespeech.server.engine.base_engine import BaseEngine
|
||||
|
||||
__all__ = ['ASREngine']
|
||||
|
||||
|
||||
pretrained_models = {
|
||||
"deepspeech2offline_aishell-zh-16k": {
|
||||
'url':
|
||||
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_aishell_ckpt_0.1.1.model.tar.gz',
|
||||
'md5':
|
||||
'932c3593d62fe5c741b59b31318aa314',
|
||||
'cfg_path':
|
||||
'model.yaml',
|
||||
'ckpt_path':
|
||||
'exp/deepspeech2/checkpoints/avg_1',
|
||||
'model':
|
||||
'exp/deepspeech2/checkpoints/avg_1.jit.pdmodel',
|
||||
'params':
|
||||
'exp/deepspeech2/checkpoints/avg_1.jit.pdiparams',
|
||||
'lm_url':
|
||||
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
|
||||
'lm_md5':
|
||||
'29e02312deb2e59b3c8686c7966d4fe3'
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class ASRServerExecutor(ASRExecutor):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
pass
|
||||
|
||||
def _init_from_path(self,
|
||||
model_type: str='wenetspeech',
|
||||
am_model: Optional[os.PathLike]=None,
|
||||
am_params: Optional[os.PathLike]=None,
|
||||
lang: str='zh',
|
||||
sample_rate: int=16000,
|
||||
cfg_path: Optional[os.PathLike]=None,
|
||||
decode_method: str='attention_rescoring',
|
||||
am_predictor_conf: dict=None):
|
||||
"""
|
||||
Init model and other resources from a specific path.
|
||||
"""
|
||||
|
||||
if cfg_path is None or am_model is None or am_params is None:
|
||||
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
||||
tag = model_type + '-' + lang + '-' + sample_rate_str
|
||||
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
|
||||
self.res_path = res_path
|
||||
self.cfg_path = os.path.join(res_path,
|
||||
pretrained_models[tag]['cfg_path'])
|
||||
|
||||
self.am_model = os.path.join(res_path,
|
||||
pretrained_models[tag]['model'])
|
||||
self.am_params = os.path.join(res_path,
|
||||
pretrained_models[tag]['params'])
|
||||
logger.info(res_path)
|
||||
logger.info(self.cfg_path)
|
||||
logger.info(self.am_model)
|
||||
logger.info(self.am_params)
|
||||
else:
|
||||
self.cfg_path = os.path.abspath(cfg_path)
|
||||
self.am_model = os.path.abspath(am_model)
|
||||
self.am_params = os.path.abspath(am_params)
|
||||
self.res_path = os.path.dirname(
|
||||
os.path.dirname(os.path.abspath(self.cfg_path)))
|
||||
|
||||
#Init body.
|
||||
self.config = CfgNode(new_allowed=True)
|
||||
self.config.merge_from_file(self.cfg_path)
|
||||
|
||||
with UpdateConfig(self.config):
|
||||
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
||||
from paddlespeech.s2t.io.collator import SpeechCollator
|
||||
self.vocab = self.config.vocab_filepath
|
||||
self.config.decode.lang_model_path = os.path.join(
|
||||
MODEL_HOME, 'language_model',
|
||||
self.config.decode.lang_model_path)
|
||||
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
||||
self.text_feature = TextFeaturizer(
|
||||
unit_type=self.config.unit_type, vocab=self.vocab)
|
||||
|
||||
lm_url = pretrained_models[tag]['lm_url']
|
||||
lm_md5 = pretrained_models[tag]['lm_md5']
|
||||
self.download_lm(
|
||||
lm_url,
|
||||
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
||||
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
|
||||
raise Exception("wrong type")
|
||||
else:
|
||||
raise Exception("wrong type")
|
||||
|
||||
# AM predictor
|
||||
self.am_predictor_conf = am_predictor_conf
|
||||
self.am_predictor = init_predictor(
|
||||
model_file=self.am_model,
|
||||
params_file=self.am_params,
|
||||
predictor_conf=self.am_predictor_conf)
|
||||
|
||||
# decoder
|
||||
self.decoder = CTCDecoder(
|
||||
odim=self.config.output_dim, # <blank> is in vocab
|
||||
enc_n_units=self.config.rnn_layer_size * 2,
|
||||
blank_id=self.config.blank_id,
|
||||
dropout_rate=0.0,
|
||||
reduction=True, # sum
|
||||
batch_average=True, # sum / batch_size
|
||||
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
|
||||
|
||||
|
||||
@paddle.no_grad()
|
||||
def infer(self, model_type: str):
|
||||
"""
|
||||
Model inference and result stored in self.output.
|
||||
"""
|
||||
cfg = self.config.decode
|
||||
audio = self._inputs["audio"]
|
||||
audio_len = self._inputs["audio_len"]
|
||||
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
||||
decode_batch_size = audio.shape[0]
|
||||
# init once
|
||||
self.decoder.init_decoder(
|
||||
decode_batch_size, self.text_feature.vocab_list,
|
||||
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
||||
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
||||
cfg.num_proc_bsearch)
|
||||
|
||||
output_data = run_model(
|
||||
self.am_predictor,
|
||||
[audio.numpy(), audio_len.numpy()])
|
||||
|
||||
probs = output_data[0]
|
||||
eouts_len = output_data[1]
|
||||
|
||||
batch_size = probs.shape[0]
|
||||
self.decoder.reset_decoder(batch_size=batch_size)
|
||||
self.decoder.next(probs, eouts_len)
|
||||
trans_best, trans_beam = self.decoder.decode()
|
||||
|
||||
# self.model.decoder.del_decoder()
|
||||
self._outputs["result"] = trans_best[0]
|
||||
|
||||
elif "conformer" in model_type or "transformer" in model_type:
|
||||
raise Exception("invalid model name")
|
||||
else:
|
||||
raise Exception("invalid model name")
|
||||
|
||||
|
||||
class ASREngine(BaseEngine):
|
||||
"""ASR server engine
|
||||
|
||||
Args:
|
||||
metaclass: Defaults to Singleton.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(ASREngine, self).__init__()
|
||||
|
||||
def init(self, config_file: str) -> bool:
|
||||
"""init engine resource
|
||||
|
||||
Args:
|
||||
config_file (str): config file
|
||||
|
||||
Returns:
|
||||
bool: init failed or success
|
||||
"""
|
||||
self.input = None
|
||||
self.output = None
|
||||
self.executor = ASRServerExecutor()
|
||||
self.config = get_config(config_file)
|
||||
|
||||
paddle.set_device(paddle.get_device())
|
||||
self.executor._init_from_path(
|
||||
model_type=self.config.model_type,
|
||||
am_model=self.config.am_model,
|
||||
am_params=self.config.am_params,
|
||||
lang=self.config.lang,
|
||||
sample_rate=self.config.sample_rate,
|
||||
cfg_path=self.config.cfg_path,
|
||||
decode_method=self.config.decode_method,
|
||||
am_predictor_conf=self.config.am_predictor_conf)
|
||||
|
||||
logger.info("Initialize ASR server engine successfully.")
|
||||
return True
|
||||
|
||||
def run(self, audio_data):
|
||||
"""engine run
|
||||
|
||||
Args:
|
||||
audio_data (bytes): base64.b64decode
|
||||
"""
|
||||
if self.executor._check(
|
||||
io.BytesIO(audio_data), self.config.sample_rate,
|
||||
self.config.force_yes):
|
||||
logger.info("start running asr engine")
|
||||
self.executor.preprocess(self.config.model_type, io.BytesIO(audio_data))
|
||||
self.executor.infer(self.config.model_type)
|
||||
self.output = self.executor.postprocess() # Retrieve result of asr.
|
||||
logger.info("end inferring asr engine")
|
||||
else:
|
||||
logger.info("file check failed!")
|
||||
self.output = None
|
||||
|
||||
def postprocess(self):
|
||||
"""postprocess
|
||||
"""
|
||||
return self.output
|
@ -0,0 +1,36 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from paddlespeech.server.engine.engine_factory import EngineFactory
|
||||
|
||||
# global value
|
||||
ENGINE_POOL = {}
|
||||
|
||||
|
||||
def get_engine_pool() -> dict:
|
||||
""" Get engine pool
|
||||
"""
|
||||
global ENGINE_POOL
|
||||
return ENGINE_POOL
|
||||
|
||||
|
||||
def init_engine_pool(config) -> bool:
|
||||
""" Init engine pool
|
||||
"""
|
||||
global ENGINE_POOL
|
||||
for engine in config.engine_backend:
|
||||
ENGINE_POOL[engine] = EngineFactory.get_engine(engine_name=engine, engine_type=config.engine_type[engine])
|
||||
if not ENGINE_POOL[engine].init(config_file=config.engine_backend[engine]):
|
||||
return False
|
||||
|
||||
return True
|
Binary file not shown.
Loading…
Reference in new issue