diff --git a/paddlespeech/s2t/exps/u2/model.py b/paddlespeech/s2t/exps/u2/model.py index 6ab671ee..992be5cd 100644 --- a/paddlespeech/s2t/exps/u2/model.py +++ b/paddlespeech/s2t/exps/u2/model.py @@ -238,7 +238,9 @@ class U2Trainer(Trainer): preprocess_conf=config.preprocess_config, n_iter_processes=config.num_workers, subsampling_factor=1, - num_encs=1) + num_encs=1, + dist_sampler=False, + shortest_first=False) self.valid_loader = BatchDataLoader( json_file=config.dev_manifest, @@ -257,7 +259,9 @@ class U2Trainer(Trainer): preprocess_conf=config.preprocess_config, n_iter_processes=config.num_workers, subsampling_factor=1, - num_encs=1) + num_encs=1, + dist_sampler=False, + shortest_first=False) logger.info("Setup train/valid Dataloader!") else: decode_batch_size = config.get('decode', dict()).get( diff --git a/paddlespeech/s2t/io/dataloader.py b/paddlespeech/s2t/io/dataloader.py index 455303f7..920de34f 100644 --- a/paddlespeech/s2t/io/dataloader.py +++ b/paddlespeech/s2t/io/dataloader.py @@ -78,7 +78,8 @@ class BatchDataLoader(): load_aux_input: bool=False, load_aux_output: bool=False, num_encs: int=1, - dist_sampler: bool=False): + dist_sampler: bool=False, + shortest_first: bool=False): self.json_file = json_file self.train_mode = train_mode self.use_sortagrad = sortagrad == -1 or sortagrad > 0 @@ -97,6 +98,7 @@ class BatchDataLoader(): self.load_aux_input = load_aux_input self.load_aux_output = load_aux_output self.dist_sampler = dist_sampler + self.shortest_first = shortest_first # read json data with jsonlines.open(json_file, 'r') as reader: @@ -113,7 +115,7 @@ class BatchDataLoader(): maxlen_out, minibatches, # for debug min_batch_size=mini_batch_size, - shortest_first=self.use_sortagrad, + shortest_first=self.shortest_first or self.use_sortagrad, count=batch_count, batch_bins=batch_bins, batch_frames_in=batch_frames_in, @@ -149,13 +151,13 @@ class BatchDataLoader(): self.reader) if self.dist_sampler: - self.sampler = DistributedBatchSampler( + self.batch_sampler = DistributedBatchSampler( dataset=self.dataset, batch_size=1, shuffle=not self.use_sortagrad if self.train_mode else False, drop_last=False, ) else: - self.sampler = BatchSampler( + self.batch_sampler = BatchSampler( dataset=self.dataset, batch_size=1, shuffle=not self.use_sortagrad if self.train_mode else False, @@ -163,7 +165,7 @@ class BatchDataLoader(): self.dataloader = DataLoader( dataset=self.dataset, - batch_sampler=self.sampler, + batch_sampler=self.batch_sampler, collate_fn=batch_collate, num_workers=self.n_iter_processes, ) @@ -194,5 +196,6 @@ class BatchDataLoader(): echo += f"load_aux_input: {self.load_aux_input}, " echo += f"load_aux_output: {self.load_aux_output}, " echo += f"dist_sampler: {self.dist_sampler}, " + echo += f"shortest_first: {self.shortest_first}, " echo += f"file: {self.json_file}" return echo diff --git a/paddlespeech/s2t/modules/ctc.py b/paddlespeech/s2t/modules/ctc.py index ffc9f038..6e965579 100644 --- a/paddlespeech/s2t/modules/ctc.py +++ b/paddlespeech/s2t/modules/ctc.py @@ -39,10 +39,6 @@ except ImportError: except Exception as e: logger.info("paddlespeech_ctcdecoders not installed!") -#try: -#except Exception as e: -# logger.info("ctcdecoder not installed!") - __all__ = ['CTCDecoder'] diff --git a/paddlespeech/s2t/training/scheduler.py b/paddlespeech/s2t/training/scheduler.py index 0222246e..b22f7ef8 100644 --- a/paddlespeech/s2t/training/scheduler.py +++ b/paddlespeech/s2t/training/scheduler.py @@ -67,18 +67,19 @@ class WarmupLR(LRScheduler): super().__init__(learning_rate, last_epoch, verbose) def __repr__(self): - return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})" + return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps}, lr={self.base_lr}, last_epoch={self.last_epoch})" def get_lr(self): + # self.last_epoch start from zero step_num = self.last_epoch + 1 return self.base_lr * self.warmup_steps**0.5 * min( step_num**-0.5, step_num * self.warmup_steps**-1.5) def set_step(self, step: int=None): ''' - It will update the learning rate in optimizer according to current ``epoch`` . + It will update the learning rate in optimizer according to current ``epoch`` . The new learning rate will take effect on next ``optimizer.step`` . - + Args: step (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1. Returns: @@ -94,7 +95,7 @@ class ConstantLR(LRScheduler): learning_rate (float): The initial learning rate. It is a python float number. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . - + Returns: ``ConstantLR`` instance to schedule learning rate. """ diff --git a/paddlespeech/s2t/training/trainer.py b/paddlespeech/s2t/training/trainer.py index 4b2011ec..cac5e570 100644 --- a/paddlespeech/s2t/training/trainer.py +++ b/paddlespeech/s2t/training/trainer.py @@ -222,7 +222,7 @@ class Trainer(): batch_sampler = self.train_loader.batch_sampler if isinstance(batch_sampler, paddle.io.DistributedBatchSampler): logger.debug( - f"train_loader.batch_sample set epoch: {self.epoch}") + f"train_loader.batch_sample.set_epoch: {self.epoch}") batch_sampler.set_epoch(self.epoch) def before_train(self):