|
|
|
@ -372,11 +372,9 @@ class GaussianDiffusion(nn.Layer):
|
|
|
|
|
The noises which is added to the input.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
# print("xxxxxxxxxxxxxxxx1: ", x, x.shape)
|
|
|
|
|
x = x.transpose((0, 2, 1))
|
|
|
|
|
x = self.norm_spec(x)
|
|
|
|
|
x = x.transpose((0, 2, 1))
|
|
|
|
|
print("xxxxxxxxxxxxxxxx2: ", x, x.shape)
|
|
|
|
|
noise_scheduler = self.noise_scheduler
|
|
|
|
|
|
|
|
|
|
# Sample noise that we'll add to the mel-spectrograms
|
|
|
|
@ -411,7 +409,7 @@ class GaussianDiffusion(nn.Layer):
|
|
|
|
|
num_inference_steps: Optional[int]=1000,
|
|
|
|
|
strength: Optional[float]=None,
|
|
|
|
|
scheduler_type: Optional[str]="ddpm",
|
|
|
|
|
clip_noise: Optional[bool]=False,
|
|
|
|
|
clip_noise: Optional[bool]=True,
|
|
|
|
|
clip_noise_range: Optional[Tuple[float, float]]=(-1, 1),
|
|
|
|
|
callback: Optional[Callable[[int, int, int, paddle.Tensor],
|
|
|
|
|
None]]=None,
|
|
|
|
|