Download CSMSC from it's [Official Website](https://test.data-baker.com/data/index/TNtts/) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
@ -6,13 +7,33 @@ Download CSMSC from it's [Official Website](https://test.data-baker.com/data/ind
Assume the path to the dataset is `~/datasets/BZNSYP` and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
+
=======
This example contains code used to train a Transformer model with [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html).
## Dataset
### Download and Extract
Download CSMSC from it's [Official Website](https://test.data-baker.com/data/index/TNtts/) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for Tacotron2, the durations of MFA are not needed here.
You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`.
Assume the path to the MFA result of CSMSC is `./baker_alignment_tone`.
>>>>>>> 18ee40f1 (修改)
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
<<<<<<<HEAD
- synthesize waveform from text file.
=======
- synthesize waveform from a text file.
>>>>>>> 18ee40f1 (修改)
```bash
./run.sh
```
@ -25,6 +46,7 @@ You can choose a range of stages you want to run, or set `stage` equal to `stop-
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
<<<<<<<HEAD
```text
dump
├── dev
@ -35,11 +57,25 @@ dump
├── test
│ ├── norm
│ └── raw
=======
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
>>>>>>> 18ee40f1 (修改)
└── train
├── norm
├── raw
└── speech_stats.npy
```
<<<<<<<HEAD
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains the speech feature of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/speech_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, the path of speech features, speaker, and id of each utterance.
@ -49,13 +85,28 @@ Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file tha
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and the id of each utterance.
Train a TransformerTTS model with LJSpeech TTS dataset.
=======
Train a TransformerTTS model.
>>>>>>> 18ee40f1 (修改)
optional arguments:
-h, --help show this help message and exit
@ -76,6 +127,7 @@ optional arguments:
4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
5. `--phones-dict` is the path of the phone vocabulary file.
<<<<<<<HEAD
## Synthesizing
We use [waveflow](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc0) as the neural vocoder.
Download Pretrained WaveFlow Model with residual channel equals 128 from [waveflow_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/waveflow/waveflow_ljspeech_ckpt_0.3.zip) and unzip it.
@ -89,10 +141,27 @@ waveflow_ljspeech_ckpt_0.3
└── step-2000000.pdparams # model parameters of waveflow
```
`./local/synthesize.sh` calls `${BIN_DIR}/synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
=======
### Synthesizing
We use [parallel wavegan](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc1) as the neural vocoder.
Download pretrained parallel wavegan model from [pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip) and unzip it.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
```
1. `--am` is acoustic model type with the format {model_name}_{dataset}
2. `--am_config`, `--am_ckpt`, `--am_stat` and `--phones_dict` are arguments for acoustic model, which correspond to the 4 files in the Tacotron2 pretrained model.
3. `--voc` is vocoder type with the format {model_name}_{dataset}
4. `--voc_config`, `--voc_ckpt`, `--voc_stat` are arguments for vocoder, which correspond to the 3 files in the parallel wavegan pretrained model.
5. `--lang` is the model language, which can be `zh` or `en`.
6. `--test_metadata` should be the metadata file in the normalized subfolder of `test` in the `dump` folder.
7. `--text` is the text file, which contains sentences to synthesize.
8. `--output_dir` is the directory to save synthesized audio files.
9. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Model
Pretrained Tacotron2 model with no silence in the edge of audios: