diff --git a/README.md b/README.md index 1144d3ab5..eccf70373 100644 --- a/README.md +++ b/README.md @@ -180,7 +180,7 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision 2021.12.14: We would like to have an online courses to introduce basics and research of speech, as well as code practice with `paddlespeech`. Please pay attention to our [Calendar](https://www.paddlepaddle.org.cn/live). ---> - 👏🏻 2022.03.28: PaddleSpeech Server is available for Audio Classification, Automatic Speech Recognition and Text-to-Speech. -- 👏🏻 2022.03.28: PaddleSpeech CLI is available for Speaker Verfication. +- 👏🏻 2022.03.28: PaddleSpeech CLI is available for Speaker Verification. - 🤗 2021.12.14: Our PaddleSpeech [ASR](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR) and [TTS](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS) Demos on Hugging Face Spaces are available! - 👏🏻 2021.12.10: PaddleSpeech CLI is available for Audio Classification, Automatic Speech Recognition, Speech Translation (English to Chinese) and Text-to-Speech. @@ -280,10 +280,14 @@ paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav For more information about server command lines, please see: [speech server demos](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/speech_server) + + ## Model List PaddleSpeech supports a series of most popular models. They are summarized in [released models](./docs/source/released_model.md) and attached with available pretrained models. + + **Speech-to-Text** contains *Acoustic Model*, *Language Model*, and *Speech Translation*, with the following details: @@ -357,6 +361,8 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
+ + **Text-to-Speech** in PaddleSpeech mainly contains three modules: *Text Frontend*, *Acoustic Model* and *Vocoder*. Acoustic Model and Vocoder models are listed as follow: @@ -473,6 +479,8 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
+ + **Audio Classification** @@ -496,6 +504,8 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
+ + **Speaker Verification** @@ -519,6 +529,8 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
+ + **Punctuation Restoration** @@ -559,10 +571,18 @@ Normally, [Speech SoTA](https://paperswithcode.com/area/speech), [Audio SoTA](ht - [Advanced Usage](./docs/source/tts/advanced_usage.md) - [Chinese Rule Based Text Frontend](./docs/source/tts/zh_text_frontend.md) - [Test Audio Samples](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html) + - Speaker Verification + - [Audio Searching](./demos/audio_searching/README.md) + - [Speaker Verification](./demos/speaker_verification/README.md) - [Audio Classification](./demos/audio_tagging/README.md) - - [Speaker Verification](./demos/speaker_verification/README.md) - [Speech Translation](./demos/speech_translation/README.md) + - [Speech Server](./demos/speech_server/README.md) - [Released Models](./docs/source/released_model.md) + - [Speech-to-Text](#SpeechToText) + - [Text-to-Speech](#TextToSpeech) + - [Audio Classification](#AudioClassification) + - [Speaker Verification](#SpeakerVerification) + - [Punctuation Restoration](#PunctuationRestoration) - [Community](#Community) - [Welcome to contribute](#contribution) - [License](#License) diff --git a/README_cn.md b/README_cn.md index ab4ce6e6b..f8f84ca87 100644 --- a/README_cn.md +++ b/README_cn.md @@ -273,6 +273,8 @@ paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav ## 模型列表 PaddleSpeech 支持很多主流的模型,并提供了预训练模型,详情请见[模型列表](./docs/source/released_model.md)。 + + PaddleSpeech 的 **语音转文本** 包含语音识别声学模型、语音识别语言模型和语音翻译, 详情如下:
@@ -347,6 +349,7 @@ PaddleSpeech 的 **语音转文本** 包含语音识别声学模型、语音识
+ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声学模型和声码器。声学模型和声码器模型如下: @@ -488,6 +491,8 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
+ + **声纹识别** @@ -511,6 +516,8 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
+ + **标点恢复** @@ -556,13 +563,18 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声 - [进阶用法](./docs/source/tts/advanced_usage.md) - [中文文本前端](./docs/source/tts/zh_text_frontend.md) - [测试语音样本](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html) + - 声纹识别 + - [声纹识别](./demos/speaker_verification/README_cn.md) + - [音频检索](./demos/audio_searching/README_cn.md) - [声音分类](./demos/audio_tagging/README_cn.md) - - [声纹识别](./demos/speaker_verification/README_cn.md) - [语音翻译](./demos/speech_translation/README_cn.md) + - [服务化部署](./demos/speech_server/README_cn.md) - [模型列表](#模型列表) - [语音识别](#语音识别模型) - [语音合成](#语音合成模型) - [声音分类](#声音分类模型) + - [声纹识别](#声纹识别模型) + - [标点恢复](#标点恢复模型) - [技术交流群](#技术交流群) - [欢迎贡献](#欢迎贡献) - [License](#License) diff --git a/demos/speaker_verification/README.md b/demos/speaker_verification/README.md index 8739d402d..71fbbfe04 100644 --- a/demos/speaker_verification/README.md +++ b/demos/speaker_verification/README.md @@ -38,6 +38,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav ``` Arguments: - `input`(required): Audio file to recognize. + - `task` (required): Specify `vector` task. Default `spk`。 - `model`: Model type of vector task. Default: `ecapatdnn_voxceleb12`. - `sample_rate`: Sample rate of the model. Default: `16000`. - `config`: Config of vector task. Use pretrained model when it is None. Default: `None`. @@ -47,45 +48,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav Output: ```bash - demo [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268 - -3.04878 1.611095 10.127234 -10.534177 -15.821609 - 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228 - -11.343508 2.3385992 -8.719341 14.213509 15.404744 - -0.39327756 6.338786 2.688887 8.7104025 17.469526 - -8.77959 7.0576906 4.648855 -1.3089896 -23.294737 - 8.013747 13.891729 -9.926753 5.655307 -5.9422326 - -22.842539 0.6293588 -18.46266 -10.811862 9.8192625 - 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942 - 1.7594414 -0.6485091 4.485623 2.0207152 7.264915 - -6.40137 23.63524 2.9711294 -22.708025 9.93719 - 20.354511 -10.324688 -0.700492 -8.783211 -5.27593 - 15.999649 3.3004563 12.747926 15.429879 4.7849145 - 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628 - 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124 - -9.224193 14.568347 -10.568833 4.982321 -4.342062 - 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362 - -6.680575 0.4757669 -5.035051 -6.7964664 16.865469 - -11.54324 7.681869 0.44475392 9.708182 -8.932846 - 0.4123232 -4.361452 1.3948607 9.511665 0.11667654 - 2.9079323 6.049952 9.275183 -18.078873 6.2983274 - -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815 - 4.010979 11.000591 -2.8873312 7.1352735 -16.79663 - 18.495346 -14.293832 7.89578 2.2714825 22.976387 - -4.875734 -3.0836344 -2.9999814 13.751918 6.448228 - -11.924197 2.171869 2.0423572 -6.173772 10.778437 - 25.77281 -4.9495463 14.57806 0.3044315 2.6132357 - -7.591999 -2.076944 9.025118 1.7834753 -3.1799617 - -4.9401326 23.465864 5.1685796 -9.018578 9.037825 - -4.4150195 6.859591 -12.274467 -0.88911164 5.186309 - -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652 - -12.397416 -12.719869 -1.395601 2.1150916 5.7381287 - -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127 - 8.731719 -20.778936 -11.495662 5.8033476 -4.752041 - 10.833007 -6.717991 4.504732 13.4244375 1.1306485 - 7.3435574 1.400918 14.704036 -9.501399 7.2315617 - -6.417456 1.3333273 11.872697 -0.30664724 8.8845 - 6.5569253 4.7948146 0.03662816 -8.704245 6.224871 - -3.2701402 -11.508579 ] + demo [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055 + 1.756596 5.167894 10.80636 -3.8226728 -5.6141334 + 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897 + -9.723131 0.6619743 -6.976803 10.213478 7.494748 + 2.9105635 3.8949256 3.7999806 7.1061673 16.905321 + -7.1493764 8.733103 3.4230042 -4.831653 -11.403367 + 11.232214 7.1274667 -4.2828417 2.452362 -5.130748 + -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683 + 0.7618269 1.1253023 -2.083836 4.725744 -8.782597 + -3.539873 3.814236 5.1420674 2.162061 4.096431 + -6.4162116 12.747448 1.9429878 -15.152943 6.417416 + 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939 + 11.567354 3.69788 11.258265 7.442363 9.183411 + 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783 + 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073 + -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116 + 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578 + -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651 + -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556 + -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704 + 3.272176 2.8382776 5.134597 -9.190781 -0.5657382 + -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576 + -0.31784213 9.493548 2.1144536 4.358092 -12.089823 + 8.451689 -7.925461 4.6242585 4.4289427 18.692003 + -2.6204622 -5.149185 -0.35821092 8.488551 4.981496 + -9.32683 -2.2544234 6.6417594 1.2119585 10.977129 + 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716 + -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796 + 0.66607 15.443222 4.740594 -3.4725387 11.592567 + -2.054497 1.7361217 -8.265324 -9.30447 5.4068313 + -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733 + -8.649895 -9.998958 -2.564841 -0.53999114 2.601808 + -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085 + 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456 + 7.3629923 0.4657332 3.132599 12.438889 -1.8337058 + 4.532936 2.7264361 10.145339 -6.521951 2.897153 + -3.3925855 5.079156 7.759716 4.677565 5.8457737 + 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 + -3.7760346 -11.118123 ] ``` - Python API @@ -97,56 +98,57 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav audio_emb = vector_executor( model='ecapatdnn_voxceleb12', sample_rate=16000, - config=None, + config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./85236145389.wav', - force_yes=False, device=paddle.get_device()) print('Audio embedding Result: \n{}'.format(audio_emb)) ``` - Output: + Output: + ```bash # Vector Result: - [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268 - -3.04878 1.611095 10.127234 -10.534177 -15.821609 - 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228 - -11.343508 2.3385992 -8.719341 14.213509 15.404744 - -0.39327756 6.338786 2.688887 8.7104025 17.469526 - -8.77959 7.0576906 4.648855 -1.3089896 -23.294737 - 8.013747 13.891729 -9.926753 5.655307 -5.9422326 - -22.842539 0.6293588 -18.46266 -10.811862 9.8192625 - 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942 - 1.7594414 -0.6485091 4.485623 2.0207152 7.264915 - -6.40137 23.63524 2.9711294 -22.708025 9.93719 - 20.354511 -10.324688 -0.700492 -8.783211 -5.27593 - 15.999649 3.3004563 12.747926 15.429879 4.7849145 - 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628 - 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124 - -9.224193 14.568347 -10.568833 4.982321 -4.342062 - 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362 - -6.680575 0.4757669 -5.035051 -6.7964664 16.865469 - -11.54324 7.681869 0.44475392 9.708182 -8.932846 - 0.4123232 -4.361452 1.3948607 9.511665 0.11667654 - 2.9079323 6.049952 9.275183 -18.078873 6.2983274 - -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815 - 4.010979 11.000591 -2.8873312 7.1352735 -16.79663 - 18.495346 -14.293832 7.89578 2.2714825 22.976387 - -4.875734 -3.0836344 -2.9999814 13.751918 6.448228 - -11.924197 2.171869 2.0423572 -6.173772 10.778437 - 25.77281 -4.9495463 14.57806 0.3044315 2.6132357 - -7.591999 -2.076944 9.025118 1.7834753 -3.1799617 - -4.9401326 23.465864 5.1685796 -9.018578 9.037825 - -4.4150195 6.859591 -12.274467 -0.88911164 5.186309 - -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652 - -12.397416 -12.719869 -1.395601 2.1150916 5.7381287 - -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127 - 8.731719 -20.778936 -11.495662 5.8033476 -4.752041 - 10.833007 -6.717991 4.504732 13.4244375 1.1306485 - 7.3435574 1.400918 14.704036 -9.501399 7.2315617 - -6.417456 1.3333273 11.872697 -0.30664724 8.8845 - 6.5569253 4.7948146 0.03662816 -8.704245 6.224871 - -3.2701402 -11.508579 ] + Audio embedding Result: + [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055 + 1.756596 5.167894 10.80636 -3.8226728 -5.6141334 + 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897 + -9.723131 0.6619743 -6.976803 10.213478 7.494748 + 2.9105635 3.8949256 3.7999806 7.1061673 16.905321 + -7.1493764 8.733103 3.4230042 -4.831653 -11.403367 + 11.232214 7.1274667 -4.2828417 2.452362 -5.130748 + -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683 + 0.7618269 1.1253023 -2.083836 4.725744 -8.782597 + -3.539873 3.814236 5.1420674 2.162061 4.096431 + -6.4162116 12.747448 1.9429878 -15.152943 6.417416 + 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939 + 11.567354 3.69788 11.258265 7.442363 9.183411 + 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783 + 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073 + -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116 + 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578 + -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651 + -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556 + -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704 + 3.272176 2.8382776 5.134597 -9.190781 -0.5657382 + -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576 + -0.31784213 9.493548 2.1144536 4.358092 -12.089823 + 8.451689 -7.925461 4.6242585 4.4289427 18.692003 + -2.6204622 -5.149185 -0.35821092 8.488551 4.981496 + -9.32683 -2.2544234 6.6417594 1.2119585 10.977129 + 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716 + -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796 + 0.66607 15.443222 4.740594 -3.4725387 11.592567 + -2.054497 1.7361217 -8.265324 -9.30447 5.4068313 + -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733 + -8.649895 -9.998958 -2.564841 -0.53999114 2.601808 + -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085 + 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456 + 7.3629923 0.4657332 3.132599 12.438889 -1.8337058 + 4.532936 2.7264361 10.145339 -6.521951 2.897153 + -3.3925855 5.079156 7.759716 4.677565 5.8457737 + 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 + -3.7760346 -11.118123 ] ``` ### 4.Pretrained Models diff --git a/demos/speaker_verification/README_cn.md b/demos/speaker_verification/README_cn.md index fe8949b3c..8b542b203 100644 --- a/demos/speaker_verification/README_cn.md +++ b/demos/speaker_verification/README_cn.md @@ -37,6 +37,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav ``` 参数: - `input`(必须输入):用于识别的音频文件。 + - `task` (必须输入): 用于指定 `vector` 处理的具体任务,默认是 `spk`。 - `model`:声纹任务的模型,默认值:`ecapatdnn_voxceleb12`。 - `sample_rate`:音频采样率,默认值:`16000`。 - `config`:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:`None`。 @@ -45,45 +46,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav 输出: ```bash - demo [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268 - -3.04878 1.611095 10.127234 -10.534177 -15.821609 - 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228 - -11.343508 2.3385992 -8.719341 14.213509 15.404744 - -0.39327756 6.338786 2.688887 8.7104025 17.469526 - -8.77959 7.0576906 4.648855 -1.3089896 -23.294737 - 8.013747 13.891729 -9.926753 5.655307 -5.9422326 - -22.842539 0.6293588 -18.46266 -10.811862 9.8192625 - 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942 - 1.7594414 -0.6485091 4.485623 2.0207152 7.264915 - -6.40137 23.63524 2.9711294 -22.708025 9.93719 - 20.354511 -10.324688 -0.700492 -8.783211 -5.27593 - 15.999649 3.3004563 12.747926 15.429879 4.7849145 - 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628 - 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124 - -9.224193 14.568347 -10.568833 4.982321 -4.342062 - 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362 - -6.680575 0.4757669 -5.035051 -6.7964664 16.865469 - -11.54324 7.681869 0.44475392 9.708182 -8.932846 - 0.4123232 -4.361452 1.3948607 9.511665 0.11667654 - 2.9079323 6.049952 9.275183 -18.078873 6.2983274 - -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815 - 4.010979 11.000591 -2.8873312 7.1352735 -16.79663 - 18.495346 -14.293832 7.89578 2.2714825 22.976387 - -4.875734 -3.0836344 -2.9999814 13.751918 6.448228 - -11.924197 2.171869 2.0423572 -6.173772 10.778437 - 25.77281 -4.9495463 14.57806 0.3044315 2.6132357 - -7.591999 -2.076944 9.025118 1.7834753 -3.1799617 - -4.9401326 23.465864 5.1685796 -9.018578 9.037825 - -4.4150195 6.859591 -12.274467 -0.88911164 5.186309 - -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652 - -12.397416 -12.719869 -1.395601 2.1150916 5.7381287 - -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127 - 8.731719 -20.778936 -11.495662 5.8033476 -4.752041 - 10.833007 -6.717991 4.504732 13.4244375 1.1306485 - 7.3435574 1.400918 14.704036 -9.501399 7.2315617 - -6.417456 1.3333273 11.872697 -0.30664724 8.8845 - 6.5569253 4.7948146 0.03662816 -8.704245 6.224871 - -3.2701402 -11.508579 ] + demo [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055 + 1.756596 5.167894 10.80636 -3.8226728 -5.6141334 + 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897 + -9.723131 0.6619743 -6.976803 10.213478 7.494748 + 2.9105635 3.8949256 3.7999806 7.1061673 16.905321 + -7.1493764 8.733103 3.4230042 -4.831653 -11.403367 + 11.232214 7.1274667 -4.2828417 2.452362 -5.130748 + -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683 + 0.7618269 1.1253023 -2.083836 4.725744 -8.782597 + -3.539873 3.814236 5.1420674 2.162061 4.096431 + -6.4162116 12.747448 1.9429878 -15.152943 6.417416 + 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939 + 11.567354 3.69788 11.258265 7.442363 9.183411 + 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783 + 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073 + -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116 + 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578 + -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651 + -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556 + -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704 + 3.272176 2.8382776 5.134597 -9.190781 -0.5657382 + -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576 + -0.31784213 9.493548 2.1144536 4.358092 -12.089823 + 8.451689 -7.925461 4.6242585 4.4289427 18.692003 + -2.6204622 -5.149185 -0.35821092 8.488551 4.981496 + -9.32683 -2.2544234 6.6417594 1.2119585 10.977129 + 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716 + -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796 + 0.66607 15.443222 4.740594 -3.4725387 11.592567 + -2.054497 1.7361217 -8.265324 -9.30447 5.4068313 + -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733 + -8.649895 -9.998958 -2.564841 -0.53999114 2.601808 + -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085 + 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456 + 7.3629923 0.4657332 3.132599 12.438889 -1.8337058 + 4.532936 2.7264361 10.145339 -6.521951 2.897153 + -3.3925855 5.079156 7.759716 4.677565 5.8457737 + 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 + -3.7760346 -11.118123 ] ``` - Python API @@ -98,7 +99,6 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav config=None, # Set `config` and `ckpt_path` to None to use pretrained model. ckpt_path=None, audio_file='./85236145389.wav', - force_yes=False, device=paddle.get_device()) print('Audio embedding Result: \n{}'.format(audio_emb)) ``` @@ -106,45 +106,46 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav 输出: ```bash # Vector Result: - [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268 - -3.04878 1.611095 10.127234 -10.534177 -15.821609 - 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228 - -11.343508 2.3385992 -8.719341 14.213509 15.404744 - -0.39327756 6.338786 2.688887 8.7104025 17.469526 - -8.77959 7.0576906 4.648855 -1.3089896 -23.294737 - 8.013747 13.891729 -9.926753 5.655307 -5.9422326 - -22.842539 0.6293588 -18.46266 -10.811862 9.8192625 - 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942 - 1.7594414 -0.6485091 4.485623 2.0207152 7.264915 - -6.40137 23.63524 2.9711294 -22.708025 9.93719 - 20.354511 -10.324688 -0.700492 -8.783211 -5.27593 - 15.999649 3.3004563 12.747926 15.429879 4.7849145 - 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628 - 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124 - -9.224193 14.568347 -10.568833 4.982321 -4.342062 - 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362 - -6.680575 0.4757669 -5.035051 -6.7964664 16.865469 - -11.54324 7.681869 0.44475392 9.708182 -8.932846 - 0.4123232 -4.361452 1.3948607 9.511665 0.11667654 - 2.9079323 6.049952 9.275183 -18.078873 6.2983274 - -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815 - 4.010979 11.000591 -2.8873312 7.1352735 -16.79663 - 18.495346 -14.293832 7.89578 2.2714825 22.976387 - -4.875734 -3.0836344 -2.9999814 13.751918 6.448228 - -11.924197 2.171869 2.0423572 -6.173772 10.778437 - 25.77281 -4.9495463 14.57806 0.3044315 2.6132357 - -7.591999 -2.076944 9.025118 1.7834753 -3.1799617 - -4.9401326 23.465864 5.1685796 -9.018578 9.037825 - -4.4150195 6.859591 -12.274467 -0.88911164 5.186309 - -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652 - -12.397416 -12.719869 -1.395601 2.1150916 5.7381287 - -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127 - 8.731719 -20.778936 -11.495662 5.8033476 -4.752041 - 10.833007 -6.717991 4.504732 13.4244375 1.1306485 - 7.3435574 1.400918 14.704036 -9.501399 7.2315617 - -6.417456 1.3333273 11.872697 -0.30664724 8.8845 - 6.5569253 4.7948146 0.03662816 -8.704245 6.224871 - -3.2701402 -11.508579 ] + Audio embedding Result: + [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055 + 1.756596 5.167894 10.80636 -3.8226728 -5.6141334 + 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897 + -9.723131 0.6619743 -6.976803 10.213478 7.494748 + 2.9105635 3.8949256 3.7999806 7.1061673 16.905321 + -7.1493764 8.733103 3.4230042 -4.831653 -11.403367 + 11.232214 7.1274667 -4.2828417 2.452362 -5.130748 + -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683 + 0.7618269 1.1253023 -2.083836 4.725744 -8.782597 + -3.539873 3.814236 5.1420674 2.162061 4.096431 + -6.4162116 12.747448 1.9429878 -15.152943 6.417416 + 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939 + 11.567354 3.69788 11.258265 7.442363 9.183411 + 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783 + 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073 + -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116 + 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578 + -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651 + -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556 + -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704 + 3.272176 2.8382776 5.134597 -9.190781 -0.5657382 + -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576 + -0.31784213 9.493548 2.1144536 4.358092 -12.089823 + 8.451689 -7.925461 4.6242585 4.4289427 18.692003 + -2.6204622 -5.149185 -0.35821092 8.488551 4.981496 + -9.32683 -2.2544234 6.6417594 1.2119585 10.977129 + 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716 + -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796 + 0.66607 15.443222 4.740594 -3.4725387 11.592567 + -2.054497 1.7361217 -8.265324 -9.30447 5.4068313 + -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733 + -8.649895 -9.998958 -2.564841 -0.53999114 2.601808 + -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085 + 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456 + 7.3629923 0.4657332 3.132599 12.438889 -1.8337058 + 4.532936 2.7264361 10.145339 -6.521951 2.897153 + -3.3925855 5.079156 7.759716 4.677565 5.8457737 + 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 + -3.7760346 -11.118123 ] ``` ### 4.预训练模型 diff --git a/demos/speaker_verification/run.sh b/demos/speaker_verification/run.sh index 856886d33..23ca8eb42 100644 --- a/demos/speaker_verification/run.sh +++ b/demos/speaker_verification/run.sh @@ -2,5 +2,5 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav -# asr -paddlespeech vector --task spk --input ./85236145389.wav \ No newline at end of file +# vector +paddlespeech vector --task spk --input ./85236145389.wav diff --git a/docs/source/released_model.md b/docs/source/released_model.md index 9a423e03e..2b2aedb71 100644 --- a/docs/source/released_model.md +++ b/docs/source/released_model.md @@ -6,7 +6,7 @@ ### Speech Recognition Model Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech | Example Link :-------------:| :------------:| :-----: | -----: | :-----: |:-----:| :-----: | :-----: | :-----: -[Ds2 Online Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.1.1.model.tar.gz) | Aishell Dataset | Char-based | 345 MB | 2 Conv + 5 LSTM layers with only forward direction | 0.080 |-| 151 h | [D2 Online Aishell ASR0](../../examples/aishell/asr0) +[Ds2 Online Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz) | Aishell Dataset | Char-based | 345 MB | 2 Conv + 5 LSTM layers with only forward direction | 0.078 |-| 151 h | [D2 Online Aishell ASR0](../../examples/aishell/asr0) [Ds2 Offline Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_aishell_ckpt_0.1.1.model.tar.gz)| Aishell Dataset | Char-based | 306 MB | 2 Conv + 3 bidirectional GRU layers| 0.064 |-| 151 h | [Ds2 Offline Aishell ASR0](../../examples/aishell/asr0) [Conformer Online Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_chunk_conformer_aishell_ckpt_0.1.2.model.tar.gz) | Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0565 |-| 151 h | [Conformer Online Aishell ASR1](../../examples/aishell/asr1) [Conformer Offline Aishell ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_conformer_aishell_ckpt_0.1.2.model.tar.gz) | Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0483 |-| 151 h | [Conformer Offline Aishell ASR1](../../examples/aishell/asr1) @@ -80,7 +80,7 @@ PANN | ESC-50 |[pann-esc50](../../examples/esc50/cls0)|[esc50_cnn6.tar.gz](https Model Type | Dataset| Example Link | Pretrained Models | Static Models :-------------:| :------------:| :-----: | :-----: | :-----: -PANN | VoxCeleb| [voxceleb_ecapatdnn](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0) | [ecapatdnn.tar.gz](https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_1.tar.gz) | - +PANN | VoxCeleb| [voxceleb_ecapatdnn](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0) | [ecapatdnn.tar.gz](https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_2_0.tar.gz) | - ## Punctuation Restoration Models Model Type | Dataset| Example Link | Pretrained Models diff --git a/examples/aishell/asr0/README.md b/examples/aishell/asr0/README.md index bb45d8df0..16489992d 100644 --- a/examples/aishell/asr0/README.md +++ b/examples/aishell/asr0/README.md @@ -173,12 +173,7 @@ bash local/data.sh --stage 2 --stop_stage 2 CUDA_VISIBLE_DEVICES= ./local/test.sh conf/deepspeech2.yaml exp/deepspeech2/checkpoints/avg_1 ``` -The performance of the released models are shown below: - -| Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech | -| :----------------------------: | :-------------: | :---------: | -----: | :------------------------------------------------- | :---- | :--- | :-------------- | -| Ds2 Online Aishell ASR0 Model | Aishell Dataset | Char-based | 345 MB | 2 Conv + 5 LSTM layers with only forward direction | 0.080 | - | 151 h | -| Ds2 Offline Aishell ASR0 Model | Aishell Dataset | Char-based | 306 MB | 2 Conv + 3 bidirectional GRU layers | 0.064 | - | 151 h | +The performance of the released models are shown in [this](./RESULTS.md) ## Stage 4: Static graph model Export This stage is to transform dygraph to static graph. ```bash diff --git a/examples/aishell/asr0/RESULTS.md b/examples/aishell/asr0/RESULTS.md index 5841a8522..8af3d66d1 100644 --- a/examples/aishell/asr0/RESULTS.md +++ b/examples/aishell/asr0/RESULTS.md @@ -4,15 +4,16 @@ | Model | Number of Params | Release | Config | Test set | Valid Loss | CER | | --- | --- | --- | --- | --- | --- | --- | -| DeepSpeech2 | 45.18M | 2.2.0 | conf/deepspeech2_online.yaml + spec aug | test | 7.994938373565674 | 0.080 | +| DeepSpeech2 | 45.18M | r0.2.0 | conf/deepspeech2_online.yaml + spec aug | test | 7.708217620849609| 0.078 | +| DeepSpeech2 | 45.18M | v2.2.0 | conf/deepspeech2_online.yaml + spec aug | test | 7.994938373565674 | 0.080 | ## Deepspeech2 Non-Streaming | Model | Number of Params | Release | Config | Test set | Valid Loss | CER | | --- | --- | --- | --- | --- | --- | --- | -| DeepSpeech2 | 58.4M | 2.2.0 | conf/deepspeech2.yaml + spec aug | test | 5.738585948944092 | 0.064000 | -| DeepSpeech2 | 58.4M | 2.1.0 | conf/deepspeech2.yaml + spec aug | test | 7.483316898345947 | 0.077860 | -| DeepSpeech2 | 58.4M | 2.1.0 | conf/deepspeech2.yaml | test | 7.299022197723389 | 0.078671 | -| DeepSpeech2 | 58.4M | 2.0.0 | conf/deepspeech2.yaml | test | - | 0.078977 | +| DeepSpeech2 | 58.4M | v2.2.0 | conf/deepspeech2.yaml + spec aug | test | 5.738585948944092 | 0.064000 | +| DeepSpeech2 | 58.4M | v2.1.0 | conf/deepspeech2.yaml + spec aug | test | 7.483316898345947 | 0.077860 | +| DeepSpeech2 | 58.4M | v2.1.0 | conf/deepspeech2.yaml | test | 7.299022197723389 | 0.078671 | +| DeepSpeech2 | 58.4M | v2.0.0 | conf/deepspeech2.yaml | test | - | 0.078977 | | --- | --- | --- | --- | --- | --- | --- | -| DeepSpeech2 | 58.4M | 1.8.5 | - | test | - | 0.080447 | +| DeepSpeech2 | 58.4M | v1.8.5 | - | test | - | 0.080447 | diff --git a/examples/esc50/README.md b/examples/esc50/README.md index 911a72ad7..9eab95d26 100644 --- a/examples/esc50/README.md +++ b/examples/esc50/README.md @@ -4,7 +4,7 @@ 对于声音分类任务,传统机器学习的一个常用做法是首先人工提取音频的时域和频域的多种特征并做特征选择、组合、变换等,然后基于SVM或决策树进行分类。而端到端的深度学习则通常利用深度网络如RNN,CNN等直接对声间波形(waveform)或时频特征(time-frequency)进行特征学习(representation learning)和分类预测。 -在IEEE ICASSP 2017 大会上,谷歌开放了一个大规模的音频数据集[Audioset](https://research.google.com/audioset/)。该数据集包含了 632 类的音频类别以及 2,084,320 条人工标记的每段 10 秒长度的声音剪辑片段(来源于YouTube视频)。目前该数据集已经有210万个已标注的视频数据,5800小时的音频数据,经过标记的声音样本的标签类别为527。 +在IEEE ICASSP 2017 大会上,谷歌开放了一个大规模的音频数据集[Audioset](https://research.google.com/audioset/)。该数据集包含了 632 类的音频类别以及 2,084,320 条人工标记的每段 **10 秒**长度的声音剪辑片段(来源于YouTube视频)。目前该数据集已经有 210万 个已标注的视频数据,5800 小时的音频数据,经过标记的声音样本的标签类别为 527。 `PANNs`([PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition](https://arxiv.org/pdf/1912.10211.pdf))是基于Audioset数据集训练的声音分类/识别的模型。经过预训练后,模型可以用于提取音频的embbedding。本示例将使用`PANNs`的预训练模型Finetune完成声音分类的任务。 @@ -12,14 +12,14 @@ ## 模型简介 PaddleAudio提供了PANNs的CNN14、CNN10和CNN6的预训练模型,可供用户选择使用: -- CNN14: 该模型主要包含12个卷积层和2个全连接层,模型参数的数量为79.6M,embbedding维度是2048。 -- CNN10: 该模型主要包含8个卷积层和2个全连接层,模型参数的数量为4.9M,embbedding维度是512。 -- CNN6: 该模型主要包含4个卷积层和2个全连接层,模型参数的数量为4.5M,embbedding维度是512。 +- CNN14: 该模型主要包含12个卷积层和2个全连接层,模型参数的数量为 79.6M,embbedding维度是 2048。 +- CNN10: 该模型主要包含8个卷积层和2个全连接层,模型参数的数量为 4.9M,embbedding维度是 512。 +- CNN6: 该模型主要包含4个卷积层和2个全连接层,模型参数的数量为 4.5M,embbedding维度是 512。 ## 数据集 -[ESC-50: Dataset for Environmental Sound Classification](https://github.com/karolpiczak/ESC-50) 是一个包含有 2000 个带标签的环境声音样本,音频样本采样率为 44,100Hz 的单通道音频文件,所有样本根据标签被划分为 50 个类别,每个类别有 40 个样本。 +[ESC-50: Dataset for Environmental Sound Classification](https://github.com/karolpiczak/ESC-50) 是一个包含有 2000 个带标签的时长为 **5 秒**的环境声音样本,音频样本采样率为 44,100Hz 的单通道音频文件,所有样本根据标签被划分为 50 个类别,每个类别有 40 个样本。 ## 模型指标 @@ -43,13 +43,13 @@ $ CUDA_VISIBLE_DEVICES=0 ./run.sh 1 conf/panns.yaml ``` 训练的参数可在 `conf/panns.yaml` 的 `training` 中配置,其中: -- `epochs`: 训练轮次,默认为50。 +- `epochs`: 训练轮次,默认为 50。 - `learning_rate`: Fine-tune的学习率;默认为5e-5。 -- `batch_size`: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数;默认为16。 +- `batch_size`: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数;默认为 16。 - `num_workers`: Dataloader获取数据的子进程数。默认为0,加载数据的流程在主进程执行。 - `checkpoint_dir`: 模型参数文件和optimizer参数文件的保存目录,默认为`./checkpoint`。 -- `save_freq`: 训练过程中的模型保存频率,默认为10。 -- `log_freq`: 训练过程中的信息打印频率,默认为10。 +- `save_freq`: 训练过程中的模型保存频率,默认为 10。 +- `log_freq`: 训练过程中的信息打印频率,默认为 10。 示例代码中使用的预训练模型为`CNN14`,如果想更换为其他预训练模型,可通过修改 `conf/panns.yaml` 的 `model` 中配置: ```yaml @@ -76,7 +76,7 @@ $ CUDA_VISIBLE_DEVICES=0 ./run.sh 2 conf/panns.yaml 训练的参数可在 `conf/panns.yaml` 的 `predicting` 中配置,其中: - `audio_file`: 指定预测的音频文件。 -- `top_k`: 预测显示的top k标签的得分,默认为1。 +- `top_k`: 预测显示的top k标签的得分,默认为 1。 - `checkpoint`: 模型参数checkpoint文件。 输出的预测结果如下: diff --git a/examples/iwslt2012/punc0/README.md b/examples/iwslt2012/punc0/README.md index 74d599a21..6caa9710b 100644 --- a/examples/iwslt2012/punc0/README.md +++ b/examples/iwslt2012/punc0/README.md @@ -21,7 +21,7 @@ The pretrained model can be downloaded here [ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/text/ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip). ### Test Result -- Ernie Linear +- Ernie | |COMMA | PERIOD | QUESTION | OVERALL| |:-----:|:-----:|:-----:|:-----:|:-----:| |Precision |0.510955 |0.526462 |0.820755 |0.619391| diff --git a/examples/iwslt2012/punc0/RESULTS.md b/examples/iwslt2012/punc0/RESULTS.md new file mode 100644 index 000000000..2e22713d8 --- /dev/null +++ b/examples/iwslt2012/punc0/RESULTS.md @@ -0,0 +1,9 @@ +# iwslt2012 + +## Ernie + +| |COMMA | PERIOD | QUESTION | OVERALL| +|:-----:|:-----:|:-----:|:-----:|:-----:| +|Precision |0.510955 |0.526462 |0.820755 |0.619391| +|Recall |0.517433 |0.564179 |0.861386 |0.647666| +|F1 |0.514173 |0.544669 |0.840580 |0.633141| diff --git a/examples/voxceleb/sv0/RESULT.md b/examples/voxceleb/sv0/RESULT.md index c37bcecef..3a3f67d09 100644 --- a/examples/voxceleb/sv0/RESULT.md +++ b/examples/voxceleb/sv0/RESULT.md @@ -4,4 +4,4 @@ | Model | Number of Params | Release | Config | dim | Test set | Cosine | Cosine + S-Norm | | --- | --- | --- | --- | --- | --- | --- | ---- | -| ECAPA-TDNN | 85M | 0.1.1 | conf/ecapa_tdnn.yaml |192 | test | 1.15 | 1.06 | +| ECAPA-TDNN | 85M | 0.2.0 | conf/ecapa_tdnn.yaml |192 | test | 1.02 | 0.95 | diff --git a/paddleaudio/paddleaudio/metric/__init__.py b/paddleaudio/paddleaudio/metric/__init__.py index 8e5ca9f75..d2b3a1360 100644 --- a/paddleaudio/paddleaudio/metric/__init__.py +++ b/paddleaudio/paddleaudio/metric/__init__.py @@ -14,4 +14,3 @@ from .dtw import dtw_distance from .eer import compute_eer from .eer import compute_minDCF -from .mcd import mcd_distance diff --git a/paddleaudio/paddleaudio/metric/mcd.py b/paddleaudio/paddleaudio/metric/mcd.py deleted file mode 100644 index 63a25fc23..000000000 --- a/paddleaudio/paddleaudio/metric/mcd.py +++ /dev/null @@ -1,63 +0,0 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from typing import Callable - -import mcd.metrics_fast as mt -import numpy as np -from mcd import dtw - -__all__ = [ - 'mcd_distance', -] - - -def mcd_distance(xs: np.ndarray, - ys: np.ndarray, - cost_fn: Callable=mt.logSpecDbDist) -> float: - """Mel cepstral distortion (MCD), dtw distance. - - Dynamic Time Warping. - Uses dynamic programming to compute: - - Examples: - .. code-block:: python - - wps[i, j] = cost_fn(xs[i], ys[j]) + min( - wps[i-1, j ], // vertical / insertion / expansion - wps[i , j-1], // horizontal / deletion / compression - wps[i-1, j-1]) // diagonal / match - - dtw = sqrt(wps[-1, -1]) - - Cost Function: - Examples: - .. code-block:: python - - logSpecDbConst = 10.0 / math.log(10.0) * math.sqrt(2.0) - - def logSpecDbDist(x, y): - diff = x - y - return logSpecDbConst * math.sqrt(np.inner(diff, diff)) - - Args: - xs (np.ndarray): ref sequence, [T,D] - ys (np.ndarray): hyp sequence, [T,D] - cost_fn (Callable, optional): Cost function. Defaults to mt.logSpecDbDist. - - Returns: - float: dtw distance - """ - - min_cost, path = dtw.dtw(xs, ys, cost_fn) - return min_cost diff --git a/paddleaudio/paddleaudio/utils/numeric.py b/paddleaudio/paddleaudio/utils/numeric.py new file mode 100644 index 000000000..126cada50 --- /dev/null +++ b/paddleaudio/paddleaudio/utils/numeric.py @@ -0,0 +1,30 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np + + +def pcm16to32(audio: np.ndarray) -> np.ndarray: + """pcm int16 to float32 + + Args: + audio (np.ndarray): Waveform with dtype of int16. + + Returns: + np.ndarray: Waveform with dtype of float32. + """ + if audio.dtype == np.int16: + audio = audio.astype("float32") + bits = np.iinfo(np.int16).bits + audio = audio / (2**(bits - 1)) + return audio diff --git a/paddleaudio/setup.py b/paddleaudio/setup.py index e08b88a3b..c92e5c73f 100644 --- a/paddleaudio/setup.py +++ b/paddleaudio/setup.py @@ -19,7 +19,7 @@ from setuptools.command.install import install from setuptools.command.test import test # set the version here -VERSION = '0.2.0' +VERSION = '0.2.1' # Inspired by the example at https://pytest.org/latest/goodpractises.html @@ -83,9 +83,8 @@ setuptools.setup( python_requires='>=3.6', install_requires=[ 'numpy >= 1.15.0', 'scipy >= 1.0.0', 'resampy >= 0.2.2', - 'soundfile >= 0.9.0', 'colorlog', 'dtaidistance == 2.3.1', 'mcd >= 0.4', - 'pathos' - ], + 'soundfile >= 0.9.0', 'colorlog', 'dtaidistance == 2.3.1', 'pathos' + ], extras_require={ 'test': [ 'nose', 'librosa==0.8.1', 'soundfile==0.10.3.post1', diff --git a/paddlespeech/cli/asr/infer.py b/paddlespeech/cli/asr/infer.py index 1fb4be434..b12b9f6fc 100644 --- a/paddlespeech/cli/asr/infer.py +++ b/paddlespeech/cli/asr/infer.py @@ -80,9 +80,9 @@ pretrained_models = { }, "deepspeech2online_aishell-zh-16k": { 'url': - 'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.1.1.model.tar.gz', + 'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz', 'md5': - 'd5e076217cf60486519f72c217d21b9b', + '23e16c69730a1cb5d735c98c83c21e16', 'cfg_path': 'model.yaml', 'ckpt_path': @@ -426,6 +426,11 @@ class ASRExecutor(BaseExecutor): try: audio, audio_sample_rate = soundfile.read( audio_file, dtype="int16", always_2d=True) + audio_duration = audio.shape[0] / audio_sample_rate + max_duration = 50.0 + if audio_duration >= max_duration: + logger.error("Please input audio file less then 50 seconds.\n") + return except Exception as e: logger.exception(e) logger.error( diff --git a/paddlespeech/cli/vector/infer.py b/paddlespeech/cli/vector/infer.py index 175a9723e..52f4f207a 100644 --- a/paddlespeech/cli/vector/infer.py +++ b/paddlespeech/cli/vector/infer.py @@ -42,9 +42,9 @@ pretrained_models = { # "paddlespeech vector --task spk --model ecapatdnn_voxceleb12-16k --sr 16000 --input ./input.wav" "ecapatdnn_voxceleb12-16k": { 'url': - 'https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_1.tar.gz', + 'https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_2_0.tar.gz', 'md5': - 'a1c0dba7d4de997187786ff517d5b4ec', + 'cc33023c54ab346cd318408f43fcaf95', 'cfg_path': 'conf/model.yaml', # the yaml config path 'ckpt_path': diff --git a/paddlespeech/t2s/exps/fastspeech2/preprocess.py b/paddlespeech/t2s/exps/fastspeech2/preprocess.py index 5bda75451..db1842b2e 100644 --- a/paddlespeech/t2s/exps/fastspeech2/preprocess.py +++ b/paddlespeech/t2s/exps/fastspeech2/preprocess.py @@ -86,6 +86,9 @@ def process_sentence(config: Dict[str, Any], logmel = mel_extractor.get_log_mel_fbank(wav) # change duration according to mel_length compare_duration_and_mel_length(sentences, utt_id, logmel) + # utt_id may be popped in compare_duration_and_mel_length + if utt_id not in sentences: + return None phones = sentences[utt_id][0] durations = sentences[utt_id][1] num_frames = logmel.shape[0] diff --git a/paddlespeech/t2s/exps/speedyspeech/preprocess.py b/paddlespeech/t2s/exps/speedyspeech/preprocess.py index 3f81c4e14..e833d1394 100644 --- a/paddlespeech/t2s/exps/speedyspeech/preprocess.py +++ b/paddlespeech/t2s/exps/speedyspeech/preprocess.py @@ -79,6 +79,9 @@ def process_sentence(config: Dict[str, Any], logmel = mel_extractor.get_log_mel_fbank(wav) # change duration according to mel_length compare_duration_and_mel_length(sentences, utt_id, logmel) + # utt_id may be popped in compare_duration_and_mel_length + if utt_id not in sentences: + return None labels = sentences[utt_id][0] # extract phone and duration phones = [] diff --git a/paddlespeech/t2s/exps/tacotron2/preprocess.py b/paddlespeech/t2s/exps/tacotron2/preprocess.py index 7f41089eb..14a0d7eae 100644 --- a/paddlespeech/t2s/exps/tacotron2/preprocess.py +++ b/paddlespeech/t2s/exps/tacotron2/preprocess.py @@ -82,6 +82,9 @@ def process_sentence(config: Dict[str, Any], logmel = mel_extractor.get_log_mel_fbank(wav) # change duration according to mel_length compare_duration_and_mel_length(sentences, utt_id, logmel) + # utt_id may be popped in compare_duration_and_mel_length + if utt_id not in sentences: + return None phones = sentences[utt_id][0] durations = sentences[utt_id][1] num_frames = logmel.shape[0]