|
|
|
@ -86,15 +86,13 @@ def forced_align(ctc_probs: paddle.Tensor, y: paddle.Tensor,
|
|
|
|
|
log_alpha = paddle.zeros(
|
|
|
|
|
(ctc_probs.size(0), len(y_insert_blank))) #(T, 2L+1)
|
|
|
|
|
log_alpha = log_alpha - float('inf') # log of zero
|
|
|
|
|
# TODO(Hui Zhang): zeros not support paddle.int16
|
|
|
|
|
state_path = (paddle.zeros(
|
|
|
|
|
(ctc_probs.size(0), len(y_insert_blank)), dtype=paddle.int32) - 1
|
|
|
|
|
(ctc_probs.size(0), len(y_insert_blank)), dtype=paddle.int16) - 1
|
|
|
|
|
) # state path, Tuple((T, 2L+1))
|
|
|
|
|
|
|
|
|
|
# init start state
|
|
|
|
|
# TODO(Hui Zhang): VarBase.__getitem__() not support np.int64
|
|
|
|
|
log_alpha[0, 0] = ctc_probs[0][int(y_insert_blank[0])] # State-b, Sb
|
|
|
|
|
log_alpha[0, 1] = ctc_probs[0][int(y_insert_blank[1])] # State-nb, Snb
|
|
|
|
|
log_alpha[0, 0] = ctc_probs[0][y_insert_blank[0]] # State-b, Sb
|
|
|
|
|
log_alpha[0, 1] = ctc_probs[0][y_insert_blank[1]] # State-nb, Snb
|
|
|
|
|
|
|
|
|
|
for t in range(1, ctc_probs.size(0)): # T
|
|
|
|
|
for s in range(len(y_insert_blank)): # 2L+1
|
|
|
|
@ -110,13 +108,11 @@ def forced_align(ctc_probs: paddle.Tensor, y: paddle.Tensor,
|
|
|
|
|
log_alpha[t - 1, s - 2],
|
|
|
|
|
])
|
|
|
|
|
prev_state = [s, s - 1, s - 2]
|
|
|
|
|
# TODO(Hui Zhang): VarBase.__getitem__() not support np.int64
|
|
|
|
|
log_alpha[t, s] = paddle.max(candidates) + ctc_probs[t][int(
|
|
|
|
|
y_insert_blank[s])]
|
|
|
|
|
log_alpha[t, s] = paddle.max(candidates) + ctc_probs[t][
|
|
|
|
|
y_insert_blank[s]]
|
|
|
|
|
state_path[t, s] = prev_state[paddle.argmax(candidates)]
|
|
|
|
|
|
|
|
|
|
# TODO(Hui Zhang): zeros not support paddle.int16
|
|
|
|
|
state_seq = -1 * paddle.ones((ctc_probs.size(0), 1), dtype=paddle.int32)
|
|
|
|
|
state_seq = -1 * paddle.ones((ctc_probs.size(0), 1), dtype=paddle.int16)
|
|
|
|
|
|
|
|
|
|
candidates = paddle.to_tensor([
|
|
|
|
|
log_alpha[-1, len(y_insert_blank) - 1], # Sb
|
|
|
|
|