convert dataset format to paddlespeech, test=doc

pull/1651/head
ccrrong 3 years ago
parent 7a03f36548
commit bc53f726fe

@ -19,7 +19,6 @@ import sys
import numpy as np
import paddle
from ami_dataset import AMIDataset
from paddle.io import BatchSampler
from paddle.io import DataLoader
from tqdm.contrib import tqdm
@ -28,6 +27,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.utils.log import Log
from paddlespeech.vector.cluster.diarization import EmbeddingMeta
from paddlespeech.vector.io.batch import batch_feature_normalize
from paddlespeech.vector.io.dataset_from_json import JSONDataset
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
from paddlespeech.vector.modules.sid_model import SpeakerIdetification
from paddlespeech.vector.training.seeding import seed_everything
@ -65,7 +65,7 @@ def create_dataloader(json_file, batch_size):
"""
# create datasets
dataset = AMIDataset(
dataset = JSONDataset(
json_file=json_file,
feat_type='melspectrogram',
n_mels=config.n_mels,
@ -93,8 +93,7 @@ def main(args, config):
ecapa_tdnn = EcapaTdnn(**config.model)
# stage2: build the speaker verification eval instance with backbone model
model = SpeakerIdetification(
backbone=ecapa_tdnn, num_class=1)
model = SpeakerIdetification(backbone=ecapa_tdnn, num_class=1)
# stage3: load the pre-trained model
# we get the last model from the epoch and save_interval

@ -4,7 +4,6 @@ stage=0
set=L
. ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
set -u
set -o pipefail
data_folder=$1
@ -12,6 +11,7 @@ manual_annot_folder=$2
save_folder=$3
pretrained_model_dir=$4
conf_path=$5
device=$6
ref_rttm_dir=${save_folder}/ref_rttms
meta_data_dir=${save_folder}/metadata
@ -35,7 +35,7 @@ if [ ${stage} -le 1 ]; then
for name in dev eval; do
python local/compute_embdding.py --config ${conf_path} \
--data-dir ${save_folder} \
--device gpu:0 \
--device ${device} \
--dataset ${name} \
--load-checkpoint ${pretrained_model_dir}
done

@ -3,8 +3,7 @@
. ./path.sh || exit 1;
set -e
stage=1
stop_stage=50
stage=0
#TARGET_DIR=${MAIN_ROOT}/dataset/ami
TARGET_DIR=/home/dataset/AMI
@ -12,15 +11,14 @@ data_folder=${TARGET_DIR}/amicorpus #e.g., /path/to/amicorpus/
manual_annot_folder=${TARGET_DIR}/ami_public_manual_1.6.2 #e.g., /path/to/ami_public_manual_1.6.2/
save_folder=./save
pretraind_model_dir=${save_folder}/model
pretraind_model_dir=${save_folder}/sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_1/model
conf_path=conf/ecapa_tdnn.yaml
device=gpu
. ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
if [ $stage -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# Prepare data and model
if [ $stage -le 0 ]; then
# Prepare data
# Download AMI corpus, You need around 10GB of free space to get whole data
# The signals are too large to package in this way,
# so you need to use the chooser to indicate which ones you wish to download
@ -29,12 +27,20 @@ if [ $stage -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "Signals: "
echo "1) Select one or more AMI meetings: the IDs please follow ./ami_split.py"
echo "2) Select media streams: Just select Headset mix"
# Download the pretrained Model from HuggingFace or other pretrained model
echo "Please download the pretrained ECAPA-TDNN Model and put the pretrainde model in given path: "${pretraind_model_dir}
fi
if [ $stage -le 1 ] && [ ${stop_stage} -ge 1 ]; then
if [ $stage -le 1 ]; then
# Download the pretrained model
wget https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_1.tar.gz
mkdir -p ${save_folder} && tar -xvf sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_1.tar.gz -C ${save_folder}
rm -rf sv0_ecapa_tdnn_voxceleb12_ckpt_0_1_1.tar.gz
echo "download the pretrained ECAPA-TDNN Model to path: "${pretraind_model_dir}
fi
if [ $stage -le 2 ]; then
# Tune hyperparams on dev set and perform final diarization on dev and eval with best hyperparams.
bash ./local/process.sh ${data_folder} ${manual_annot_folder} ${save_folder} ${pretraind_model_dir} ${conf_path} || exit 1
echo ${data_folder} ${manual_annot_folder} ${save_folder} ${pretraind_model_dir} ${conf_path}
bash ./local/process.sh ${data_folder} ${manual_annot_folder} \
${save_folder} ${pretraind_model_dir} ${conf_path} ${device} || exit 1
fi

@ -0,0 +1,116 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from dataclasses import dataclass
from dataclasses import fields
from paddle.io import Dataset
from paddleaudio import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from paddleaudio.compliance.librosa import mfcc
@dataclass
class meta_info:
"""the audio meta info in the vector JSONDataset
Args:
id (str): the segment name
duration (float): segment time
wav (str): wav file path
start (int): start point in the original wav file
stop (int): stop point in the original wav file
lab_id (str): the record id
"""
id: str
duration: float
wav: str
start: int
stop: int
record_id: str
# json dataset support feature type
feat_funcs = {
'raw': None,
'melspectrogram': melspectrogram,
'mfcc': mfcc,
}
class JSONDataset(Dataset):
"""
dataset from json file.
"""
def __init__(self, json_file: str, feat_type: str='raw', **kwargs):
"""
Ags:
json_file (:obj:`str`): Data prep JSON file.
labels (:obj:`List[int]`): Labels of audio files.
feat_type (:obj:`str`, `optional`, defaults to `raw`):
It identifies the feature type that user wants to extrace of an audio file.
"""
if feat_type not in feat_funcs.keys():
raise RuntimeError(
f"Unknown feat_type: {feat_type}, it must be one in {list(feat_funcs.keys())}"
)
self.json_file = json_file
self.feat_type = feat_type
self.feat_config = kwargs
self._data = self._get_data()
super(JSONDataset, self).__init__()
def _get_data(self):
with open(self.json_file, "r") as f:
meta_data = json.load(f)
data = []
for key in meta_data:
sub_seg = meta_data[key]["wav"]
wav = sub_seg["file"]
duration = sub_seg["duration"]
start = sub_seg["start"]
stop = sub_seg["stop"]
rec_id = str(key).rsplit("_", 2)[0]
data.append(
meta_info(
str(key),
float(duration), wav, int(start), int(stop), str(rec_id)))
return data
def _convert_to_record(self, idx: int):
sample = self._data[idx]
record = {}
# To show all fields in a namedtuple
for field in fields(sample):
record[field.name] = getattr(sample, field.name)
waveform, sr = load_audio(record['wav'])
waveform = waveform[record['start']:record['stop']]
feat_func = feat_funcs[self.feat_type]
feat = feat_func(
waveform, sr=sr, **self.feat_config) if feat_func else waveform
record.update({'feat': feat})
return record
def __getitem__(self, idx):
return self._convert_to_record(idx)
def __len__(self):
return len(self._data)
Loading…
Cancel
Save