[TTS]Cantonese FastSpeech2 Training, test=tts ()

pull/2922/head
HuangLiangJie 2 years ago committed by GitHub
parent c75906462e
commit acfa057dc7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,117 @@
# FastSpeech2 with Cantonese language
## Dataset
### Download and Extract
If you don't have the Cantonese datasets mentioned above, please download and unzip [Guangzhou_Cantonese_Scripted_Speech_Corpus_Daily_Use_Sentence](https://magichub.com/datasets/guangzhou-cantonese-scripted-speech-corpus-daily-use-sentence/) and [Guangzhou_Cantonese_Scripted_Speech_Corpus_in_Vehicle](https://magichub.com/datasets/guangzhou-cantonese-scripted-speech-corpus-in-the-vehicle/) under `~/datasets/`.
To obtain better performance, please combine these two datasets together as follows:
```bash
mkdir -p ~/datasets/canton_all/WAV
cp -r ~/datasets/Guangzhou_Cantonese_Scripted_Speech_Corpus_Daily_Use_Sentence/WAV/* ~/datasets/canton_all/WAV
cp -r ~/datasets/Guangzhou_Cantonese_Scripted_Speech_Corpus_in_Vehicle/WAV/* ~/datasets/canton_all/WAV
```
After that, it should be look like:
```
~/datasets/canton_all
│ └── WAV
│ └──G0001
│ └──G0002
│ ...
│ └──G0071
│ └──G0072
```
### Get MFA Result and Extract
We use [MFA1.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for canton_fastspeech2.
You can train your MFA model reference to [canton_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
We here provide the MFA results of these two datasets. [canton_alignment.zip](https://paddlespeech.bj.bcebos.com/MFA/Canton/canton_alignment.zip)
## Get Started
Assume the path to the Cantonese MFA result of the two datsets mentioned above is `./canton_alignment`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── energy_stats.npy
├── norm
├── pitch_stats.npy
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech、pitch and energy features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, the path of pitch features, a path of energy features, speaker, and id of each utterance.
### Training details can refer to the script of [examples/aishell3/tts3](../../aishell3/tts3).
## Pretrained Model(Waiting========)
Pretrained FastSpeech2 model with no silence in the edge of audios:
- [fastspeech2_aishell3_ckpt_1.1.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_aishell3_ckpt_1.1.0.zip)
- [fastspeech2_conformer_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_aishell3_ckpt_0.2.0.zip) (Thanks for [@awmmmm](https://github.com/awmmmm)'s contribution)
FastSpeech2 checkpoint contains files listed below.
```text
fastspeech2_aishell3_ckpt_1.1.0
├── default.yaml # default config used to train fastspeech2
├── energy_stats.npy # statistics used to normalize energy when training fastspeech2
├── phone_id_map.txt # phone vocabulary file when training fastspeech2
├── pitch_stats.npy # statistics used to normalize pitch when training fastspeech2
├── snapshot_iter_96400.pdz # model parameters and optimizer states
├── speaker_id_map.txt # speaker id map file when training a multi-speaker fastspeech2
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_aishell3 \
--am_config=fastspeech2_aishell3_ckpt_1.1.0/default.yaml \
--am_ckpt=fastspeech2_aishell3_ckpt_1.1.0/snapshot_iter_96400.pdz \
--am_stat=fastspeech2_aishell3_ckpt_1.1.0/speech_stats.npy \
--voc=pwgan_aishell3 \
--voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
--voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
--voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=exp/default/test_e2e \
--phones_dict=fastspeech2_aishell3_ckpt_1.1.0/phone_id_map.txt \
--speaker_dict=fastspeech2_aishell3_ckpt_1.1.0/speaker_id_map.txt \
--spk_id=0 \
--inference_dir=exp/default/inference
```

@ -0,0 +1,107 @@
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
# Only used for the model using pitch features (e.g. FastSpeech2)
# The canton datasets we use are different from others like Databaker or LJSpeech,
# we set it to 110 to avoid too many zero-pitch problem.
# Reference: https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder/issues/38
f0min: 110 # Minimum f0 for pitch extraction.
f0max: 400 # Maximum f0 for pitch extraction.
###########################################################
# DATA SETTING #
###########################################################
batch_size: 32
num_workers: 2
###########################################################
# MODEL SETTING #
###########################################################
model:
adim: 384 # attention dimension
aheads: 2 # number of attention heads
elayers: 4 # number of encoder layers
eunits: 1536 # number of encoder ff units
dlayers: 4 # number of decoder layers
dunits: 1536 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer
duration_predictor_layers: 2 # number of layers of duration predictor
duration_predictor_chans: 256 # number of channels of duration predictor
duration_predictor_kernel_size: 3 # filter size of duration predictor
postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet
use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
reduction_factor: 1 # reduction factor
init_type: xavier_uniform # initialization type
init_enc_alpha: 1.0 # initial value of alpha of encoder scaled position encoding
init_dec_alpha: 1.0 # initial value of alpha of decoder scaled position encoding
transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer
pitch_predictor_layers: 5 # number of conv layers in pitch predictor
pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor
pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor
pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor
pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch
pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch
stop_gradient_from_pitch_predictor: True # whether to stop the gradient from pitch predictor to encoder
energy_predictor_layers: 2 # number of conv layers in energy predictor
energy_predictor_chans: 256 # number of channels of conv layers in energy predictor
energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor
energy_predictor_dropout: 0.5 # dropout rate in energy predictor
energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy
energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy
stop_gradient_from_energy_predictor: False # whether to stop the gradient from energy predictor to encoder
spk_embed_dim: 256 # speaker embedding dimension
spk_embed_integration_type: concat # speaker embedding integration type
###########################################################
# UPDATER SETTING #
###########################################################
updater:
use_masking: True # whether to apply masking for padded part in loss calculation
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 1000
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086

@ -0,0 +1,75 @@
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./canton_alignment \
--output durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=canton \
--rootdir=~/datasets/canton_all \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="pitch"
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="energy"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi

@ -0,0 +1 @@
../../../aishell3/tts3/local/synthesize.sh

@ -0,0 +1 @@
../../../aishell3/tts3/local/train.sh

@ -0,0 +1 @@
../../csmsc/tts3/path.sh

@ -0,0 +1,70 @@
#!/bin/bash
set -e
source path.sh
gpus=0
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_112793.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# inference with static model, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '1.0.0' ]]; then
pip install paddle2onnx==1.0.0
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_aishell3
# considering the balance between speed and quality, we recommend that you use hifigan as vocoder
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx pwgan_aishell3
# ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx hifigan_aishell3
fi
# inference with onnxruntime, use fastspeech2 + pwgan by default
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
./local/ort_predict.sh ${train_output_path}
fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
./local/export2lite.sh ${train_output_path} inference pdlite fastspeech2_aishell3 x86
./local/export2lite.sh ${train_output_path} inference pdlite pwgan_aishell3 x86
# ./local/export2lite.sh ${train_output_path} inference pdlite hifigan_aishell3 x86
fi
if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/lite_predict.sh ${train_output_path} || exit -1
fi

@ -102,7 +102,7 @@ class Pitch():
def _convert_to_continuous_f0(self, f0: np.ndarray) -> np.ndarray:
if (f0 == 0).all():
print("All frames seems to be unvoiced.")
print("All frames seems to be unvoiced, this utt will be removed.")
return f0
# padding start and end of f0 sequence

@ -54,8 +54,15 @@ def process_sentence(config: Dict[str, Any],
record = None
if utt_id in sentences:
# reading, resampling may occur
wav, _ = librosa.load(str(fp), sr=config.fs)
if len(wav.shape) != 1:
wav, _ = librosa.load(
str(fp), sr=config.fs,
mono=False) if "canton" in str(fp) else librosa.load(
str(fp), sr=config.fs)
if len(wav.shape) == 2 and "canton" in str(fp):
# Remind that Cantonese datasets should be placed in ~/datasets/canton_all. Otherwise, it may cause problem.
wav = wav[0]
wav = np.ascontiguousarray(wav)
elif len(wav.shape) != 1:
return record
max_value = np.abs(wav).max()
if max_value > 1.0:
@ -102,6 +109,8 @@ def process_sentence(config: Dict[str, Any],
np.save(mel_path, logmel)
# extract pitch and energy
f0 = pitch_extractor.get_pitch(wav, duration=np.array(durations))
if (f0 == 0).all():
return None
assert f0.shape[0] == len(durations)
f0_dir = output_dir / "data_pitch"
f0_dir.mkdir(parents=True, exist_ok=True)
@ -282,7 +291,20 @@ def main():
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
elif args.dataset == "canton":
sub_num_dev = 5
wav_dir = rootdir / "WAV"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
elif args.dataset == "ljspeech":
wav_files = sorted(list((rootdir / "wavs").rglob("*.wav")))
# split data into 3 sections

Loading…
Cancel
Save