parent
b46743f446
commit
ac6a4da2e0
@ -0,0 +1,78 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from paddle import nn
|
||||
|
||||
__all__ = [
|
||||
"summary", "gradient_norm", "freeze", "unfreeze", "print_grads",
|
||||
"print_params"
|
||||
]
|
||||
|
||||
|
||||
def summary(layer: nn.Layer, print_func=print):
|
||||
num_params = num_elements = 0
|
||||
print_func("layer summary:")
|
||||
for name, param in layer.state_dict().items():
|
||||
print_func("{}|{}|{}".format(name, param.shape, np.prod(param.shape)))
|
||||
num_elements += np.prod(param.shape)
|
||||
num_params += 1
|
||||
print_func("layer has {} parameters, {} elements.".format(num_params,
|
||||
num_elements))
|
||||
|
||||
|
||||
def gradient_norm(layer: nn.Layer):
|
||||
grad_norm_dict = {}
|
||||
for name, param in layer.state_dict().items():
|
||||
if param.trainable:
|
||||
grad = param.gradient()
|
||||
grad_norm_dict[name] = np.linalg.norm(grad) / grad.size
|
||||
return grad_norm_dict
|
||||
|
||||
|
||||
def recursively_remove_weight_norm(layer: nn.Layer):
|
||||
for layer in layer.sublayers():
|
||||
try:
|
||||
nn.utils.remove_weight_norm(layer)
|
||||
except:
|
||||
# ther is not weight norm hoom in this layer
|
||||
pass
|
||||
|
||||
|
||||
def freeze(layer: nn.Layer):
|
||||
for param in layer.parameters():
|
||||
param.trainable = False
|
||||
|
||||
|
||||
def unfreeze(layer: nn.Layer):
|
||||
for param in layer.parameters():
|
||||
param.trainable = True
|
||||
|
||||
|
||||
def print_grads(model, print_func=print):
|
||||
for n, p in model.named_parameters():
|
||||
msg = f"param grad: {n}: shape: {p.shape} grad: {p.grad}"
|
||||
if print_func:
|
||||
print_func(msg)
|
||||
|
||||
|
||||
def print_params(model, print_func=print):
|
||||
total = 0.0
|
||||
for n, p in model.named_parameters():
|
||||
msg = f"param: {n}: shape: {p.shape} stop_grad: {p.stop_gradient}"
|
||||
total += np.prod(p.shape)
|
||||
if print_func:
|
||||
print_func(msg)
|
||||
if print_func:
|
||||
print_func(f"Total parameters: {total}!")
|
Loading…
Reference in new issue