diff --git a/paddlespeech/cli/st/infer.py b/paddlespeech/cli/st/infer.py index d7b53a072..32f9d425a 100644 --- a/paddlespeech/cli/st/infer.py +++ b/paddlespeech/cli/st/infer.py @@ -18,7 +18,7 @@ from typing import List from typing import Optional from typing import Union -import kaldi_io +import kaldiio import numpy as np import paddle import soundfile @@ -234,7 +234,7 @@ class STExecutor(BaseExecutor): f"{utt_name} {wav_file}".encode("utf8")) fbank_extract_process.stdin.close() fbank_feat = dict( - kaldi_io.read_mat_ark(fbank_extract_process.stdout))[utt_name] + kaldiio.load_ark(fbank_extract_process.stdout))[utt_name] extract_command = ["compute-kaldi-pitch-feats", "scp:-", "ark:-"] pitch_extract_process = subprocess.Popen( @@ -251,8 +251,7 @@ class STExecutor(BaseExecutor): stdout=subprocess.PIPE, stderr=subprocess.PIPE) pitch_extract_process.stdin.close() - pitch_feat = dict( - kaldi_io.read_mat_ark(pitch_process.stdout))[utt_name] + pitch_feat = dict(kaldiio.load_ark(pitch_process.stdout))[utt_name] concated_feat = np.concatenate((fbank_feat, pitch_feat), axis=1) raw_feat = f"{utt_name}.raw" with WriteHelper( @@ -272,7 +271,7 @@ class STExecutor(BaseExecutor): stdin=cmvn_process.stdout, stdout=subprocess.PIPE, stderr=subprocess.PIPE) - norm_feat = dict(kaldi_io.read_mat_ark(process.stdout))[utt_name] + norm_feat = dict(kaldiio.load_ark(process.stdout))[utt_name] self._inputs["audio"] = paddle.to_tensor(norm_feat).unsqueeze(0) self._inputs["audio_len"] = paddle.to_tensor( self._inputs["audio"].shape[1], dtype="int64") diff --git a/setup.py b/setup.py index 039ab82a7..9aaaa6eb1 100644 --- a/setup.py +++ b/setup.py @@ -37,7 +37,6 @@ requirements = { "jieba", "jsonlines", "kaldiio", - "kaldi_io", "librosa", "loguru", "matplotlib",