diff --git a/deepspeech/__init__.py b/deepspeech/__init__.py index 90ab2223..493f10a6 100644 --- a/deepspeech/__init__.py +++ b/deepspeech/__init__.py @@ -362,19 +362,11 @@ def ctc_loss(logits, label_lengths, blank=0, reduction='mean', - norm_by_times=True, - norm_by_batchsize=False, - norm_by_total_logits_len=False): + norm_by_times=True): #logger.info("my ctc loss with norm by times") ## https://github.com/PaddlePaddle/Paddle/blob/f5ca2db2cc/paddle/fluid/operators/warpctc_op.h#L403 - loss_out = paddle.fluid.layers.warpctc( - logits, - labels, - blank, - norm_by_times, - input_lengths, - label_lengths, - norm_by_batchsize, ) + loss_out = paddle.fluid.layers.warpctc(logits, labels, blank, norm_by_times, + input_lengths, label_lengths) loss_out = paddle.fluid.layers.squeeze(loss_out, [-1]) assert reduction in ['mean', 'sum', 'none'] diff --git a/deepspeech/models/ds2/deepspeech2.py b/deepspeech/models/ds2/deepspeech2.py index a2aa31f7..63327a8c 100644 --- a/deepspeech/models/ds2/deepspeech2.py +++ b/deepspeech/models/ds2/deepspeech2.py @@ -219,10 +219,10 @@ class DeepSpeech2Model(nn.Layer): The model built from pretrained result. """ model = cls( - #feat_size=dataloader.collate_fn.feature_size, - feat_size=dataloader.dataset.feature_size, - #dict_size=dataloader.collate_fn.vocab_size, - dict_size=dataloader.dataset.vocab_size, + feat_size=dataloader.collate_fn.feature_size, + #feat_size=dataloader.dataset.feature_size, + dict_size=dataloader.collate_fn.vocab_size, + #dict_size=dataloader.dataset.vocab_size, num_conv_layers=config.model.num_conv_layers, num_rnn_layers=config.model.num_rnn_layers, rnn_size=config.model.rnn_layer_size,