Add prosody prediction in synthesize_e2e, test=tts (#2693)

pull/2723/head
HuangLiangJie 2 years ago committed by GitHub
parent b4ea7bfc0a
commit a874d8f325
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,74 @@
# This example mainly follows the FastSpeech2 with CSMSC
This example contains code used to train a rhythm version of [Fastspeech2](https://arxiv.org/abs/2006.04558) model with [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html).
## Dataset
### Download and Extract
Download CSMSC from it's [Official Website](https://test.data-baker.com/data/index/TNtts/) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2.
You can directly download the rhythm version of MFA result from here [baker_alignment_tone.zip](https://paddlespeech.bj.bcebos.com/Rhy_e2e/baker_alignment_tone.zip), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
Remember in our repo, you should add `--rhy-with-duration` flag to obtain the rhythm information.
## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`.
Assume the path to the MFA result of CSMSC is `./baker_alignment_tone`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from a text file.
5. inference using the static model.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── energy_stats.npy
├── norm
├── pitch_stats.npy
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech、pitch and energy features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, the path of pitch features, the path of energy features, speaker, and the id of each utterance.
# For more details, You can refer to [FastSpeech2 with CSMSC](../tts3)
## Pretrained Model
Pretrained FastSpeech2 model for end-to-end rhythm version:
- [fastspeech2_rhy_csmsc_ckpt_1.3.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_rhy_csmsc_ckpt_1.3.0.zip)
This FastSpeech2 checkpoint contains files listed below.
```text
fastspeech2_rhy_csmsc_ckpt_1.3.0
├── default.yaml # default config used to train fastspeech2
├── phone_id_map.txt # phone vocabulary file when training fastspeech2
├── snapshot_iter_153000.pdz # model parameters and optimizer states
├── durations.txt # the intermediate output of preprocess.sh
├── energy_stats.npy
├── pitch_stats.npy
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2
```

@ -0,0 +1 @@
../../tts3/conf/default.yaml

@ -0,0 +1 @@
../../tts3/local/preprocess.sh

@ -0,0 +1 @@
../../tts3/local/synthesize.sh

@ -0,0 +1,119 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--use_rhy=True
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--use_rhy=True
fi
# the pretrained models haven't release now
# style melgan
# style melgan's Dygraph to Static Graph is not ready now
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--use_rhy=True
# --inference_dir=${train_output_path}/inference
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--use_rhy=True
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--use_rhy=True
fi

@ -0,0 +1 @@
../../tts3/local/train.sh

@ -0,0 +1,38 @@
#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
### please place the mfa result of rhythm here
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -1690,3 +1690,16 @@ g2pw_onnx_models = {
},
},
}
# ---------------------------------
# ------------- Rhy_frontend ---------------
# ---------------------------------
rhy_frontend_models = {
'rhy_e2e': {
'1.0': {
'url':
'https://paddlespeech.bj.bcebos.com/Rhy_e2e/rhy_frontend.zip',
'md5': '6624a77393de5925d5a84400b363d8ef',
},
},
}

@ -161,10 +161,13 @@ def get_test_dataset(test_metadata: List[Dict[str, Any]],
# frontend
def get_frontend(lang: str='zh',
phones_dict: Optional[os.PathLike]=None,
tones_dict: Optional[os.PathLike]=None):
tones_dict: Optional[os.PathLike]=None,
use_rhy=False):
if lang == 'zh':
frontend = Frontend(
phone_vocab_path=phones_dict, tone_vocab_path=tones_dict)
phone_vocab_path=phones_dict,
tone_vocab_path=tones_dict,
use_rhy=use_rhy)
elif lang == 'en':
frontend = English(phone_vocab_path=phones_dict)
elif lang == 'mix':

@ -27,6 +27,7 @@ from paddlespeech.t2s.exps.syn_utils import get_sentences
from paddlespeech.t2s.exps.syn_utils import get_voc_inference
from paddlespeech.t2s.exps.syn_utils import run_frontend
from paddlespeech.t2s.exps.syn_utils import voc_to_static
from paddlespeech.t2s.utils import str2bool
def evaluate(args):
@ -49,7 +50,8 @@ def evaluate(args):
frontend = get_frontend(
lang=args.lang,
phones_dict=args.phones_dict,
tones_dict=args.tones_dict)
tones_dict=args.tones_dict,
use_rhy=args.use_rhy)
print("frontend done!")
# acoustic model
@ -240,6 +242,11 @@ def parse_args():
type=str,
help="text to synthesize, a 'utt_id sentence' pair per line.")
parser.add_argument("--output_dir", type=str, help="output dir.")
parser.add_argument(
"--use_rhy",
type=str2bool,
default=False,
help="run rhythm frontend or not")
args = parser.parse_args()
return args

@ -0,0 +1,14 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .rhy_predictor import *

@ -0,0 +1,106 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import paddle
import yaml
from paddlenlp.transformers import ErnieTokenizer
from yacs.config import CfgNode
from paddlespeech.cli.utils import download_and_decompress
from paddlespeech.resource.pretrained_models import rhy_frontend_models
from paddlespeech.text.models.ernie_linear import ErnieLinear
from paddlespeech.utils.env import MODEL_HOME
DefinedClassifier = {
'ErnieLinear': ErnieLinear,
}
model_version = '1.0'
class RhyPredictor():
def __init__(
self,
model_dir: os.PathLike=MODEL_HOME, ):
uncompress_path = download_and_decompress(
rhy_frontend_models['rhy_e2e'][model_version], model_dir)
with open(os.path.join(uncompress_path, 'rhy_default.yaml')) as f:
config = CfgNode(yaml.safe_load(f))
self.punc_list = []
with open(os.path.join(uncompress_path, 'rhy_token'), 'r') as f:
for line in f:
self.punc_list.append(line.strip())
self.punc_list = [0] + self.punc_list
self.make_rhy_dict()
self.model = DefinedClassifier["ErnieLinear"](**config["model"])
pretrained_token = config['data_params']['pretrained_token']
self.tokenizer = ErnieTokenizer.from_pretrained(pretrained_token)
state_dict = paddle.load(
os.path.join(uncompress_path, 'snapshot_iter_2600_main_params.pdz'))
self.model.set_state_dict(state_dict)
self.model.eval()
def _clean_text(self, text):
text = text.lower()
text = re.sub('[^A-Za-z0-9\u4e00-\u9fa5]', '', text)
text = re.sub(f'[{"".join([p for p in self.punc_list][1:])}]', '', text)
return text
def preprocess(self, text, tokenizer):
clean_text = self._clean_text(text)
assert len(clean_text) > 0, f'Invalid input string: {text}'
tokenized_input = tokenizer(
list(clean_text), return_length=True, is_split_into_words=True)
_inputs = dict()
_inputs['input_ids'] = tokenized_input['input_ids']
_inputs['seg_ids'] = tokenized_input['token_type_ids']
_inputs['seq_len'] = tokenized_input['seq_len']
return _inputs
def get_prediction(self, raw_text):
_inputs = self.preprocess(raw_text, self.tokenizer)
seq_len = _inputs['seq_len']
input_ids = paddle.to_tensor(_inputs['input_ids']).unsqueeze(0)
seg_ids = paddle.to_tensor(_inputs['seg_ids']).unsqueeze(0)
logits, _ = self.model(input_ids, seg_ids)
preds = paddle.argmax(logits, axis=-1).squeeze(0)
tokens = self.tokenizer.convert_ids_to_tokens(
_inputs['input_ids'][1:seq_len - 1])
labels = preds[1:seq_len - 1].tolist()
assert len(tokens) == len(labels)
# add 0 for non punc
text = ''
for t, l in zip(tokens, labels):
text += t
if l != 0: # Non punc.
text += self.punc_list[l]
return text
def make_rhy_dict(self):
self.rhy_dict = {}
for i, p in enumerate(self.punc_list[1:]):
self.rhy_dict[p] = 'sp' + str(i + 1)
def pinyin_align(self, pinyins, rhy_pre):
final_py = []
j = 0
for i in range(len(rhy_pre)):
if rhy_pre[i] in self.rhy_dict:
final_py.append(self.rhy_dict[rhy_pre[i]])
else:
final_py.append(pinyins[j])
j += 1
return final_py

@ -30,6 +30,7 @@ from pypinyin_dict.phrase_pinyin_data import large_pinyin
from paddlespeech.t2s.frontend.g2pw import G2PWOnnxConverter
from paddlespeech.t2s.frontend.generate_lexicon import generate_lexicon
from paddlespeech.t2s.frontend.rhy_prediction.rhy_predictor import RhyPredictor
from paddlespeech.t2s.frontend.tone_sandhi import ToneSandhi
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
from paddlespeech.t2s.ssml.xml_processor import MixTextProcessor
@ -82,11 +83,13 @@ class Frontend():
def __init__(self,
g2p_model="g2pW",
phone_vocab_path=None,
tone_vocab_path=None):
tone_vocab_path=None,
use_rhy=False):
self.mix_ssml_processor = MixTextProcessor()
self.tone_modifier = ToneSandhi()
self.text_normalizer = TextNormalizer()
self.punc = ":,;。?!“”‘’':,;.?!"
self.rhy_phns = ['sp1', 'sp2', 'sp3', 'sp4']
self.phrases_dict = {
'开户行': [['ka1i'], ['hu4'], ['hang2']],
'发卡行': [['fa4'], ['ka3'], ['hang2']],
@ -105,6 +108,10 @@ class Frontend():
'': [['lei5']],
'掺和': [['chan1'], ['huo5']]
}
self.use_rhy = use_rhy
if use_rhy:
self.rhy_predictor = RhyPredictor()
print("Rhythm predictor loaded.")
# g2p_model can be pypinyin and g2pM and g2pW
self.g2p_model = g2p_model
if self.g2p_model == "g2pM":
@ -195,9 +202,13 @@ class Frontend():
segments = sentences
phones_list = []
for seg in segments:
if self.use_rhy:
seg = self.rhy_predictor._clean_text(seg)
phones = []
# Replace all English words in the sentence
seg = re.sub('[a-zA-Z]+', '', seg)
if self.use_rhy:
seg = self.rhy_predictor.get_prediction(seg)
seg_cut = psg.lcut(seg)
initials = []
finals = []
@ -205,11 +216,18 @@ class Frontend():
# 为了多音词获得更好的效果,这里采用整句预测
if self.g2p_model == "g2pW":
try:
if self.use_rhy:
seg = self.rhy_predictor._clean_text(seg)
pinyins = self.g2pW_model(seg)[0]
except Exception:
# g2pW采用模型采用繁体输入如果有cover不了的简体词采用g2pM预测
print("[%s] not in g2pW dict,use g2pM" % seg)
pinyins = self.g2pM_model(seg, tone=True, char_split=False)
if self.use_rhy:
rhy_text = self.rhy_predictor.get_prediction(seg)
final_py = self.rhy_predictor.pinyin_align(pinyins,
rhy_text)
pinyins = final_py
pre_word_length = 0
for word, pos in seg_cut:
sub_initials = []
@ -271,7 +289,7 @@ class Frontend():
phones.append(c)
if c and c in self.punc:
phones.append('sp')
if v and v not in self.punc:
if v and v not in self.punc and v not in self.rhy_phns:
phones.append(v)
phones_list.append(phones)
if merge_sentences:
@ -330,7 +348,7 @@ class Frontend():
phones.append(c)
if c and c in self.punc:
phones.append('sp')
if v and v not in self.punc:
if v and v not in self.punc and v not in self.rhy_phns:
phones.append(v)
phones_list.append(phones)
if merge_sentences:
@ -504,6 +522,11 @@ class Frontend():
print("----------------------------")
return [sum(all_phonemes, [])]
def add_sp_if_no(self, phonemes):
if not phonemes[-1][-1].startswith('sp'):
phonemes[-1].append('sp4')
return phonemes
def get_input_ids(self,
sentence: str,
merge_sentences: bool=True,
@ -519,6 +542,8 @@ class Frontend():
merge_sentences=merge_sentences,
print_info=print_info,
robot=robot)
if self.use_rhy:
phonemes = self.add_sp_if_no(phonemes)
result = {}
phones = []
tones = []

Loading…
Cancel
Save