|
|
|
@ -80,9 +80,6 @@ class PaddleASRConnectionHanddler:
|
|
|
|
|
self.init_decoder()
|
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
|
|
from paddle.jit.layer import Layer
|
|
|
|
|
self.jit_layer = Layer()
|
|
|
|
|
self.jit_layer.load('/workspace/conformer/PaddleSpeech-conformer/conformer/conformer', paddle.CUDAPlace(1))
|
|
|
|
|
|
|
|
|
|
def init_decoder(self):
|
|
|
|
|
if "deepspeech2" in self.model_type:
|
|
|
|
@ -478,15 +475,9 @@ class PaddleASRConnectionHanddler:
|
|
|
|
|
# cur chunk
|
|
|
|
|
chunk_xs = self.cached_feat[:, cur:end, :]
|
|
|
|
|
# forward chunk
|
|
|
|
|
# (y, self.att_cache, self.cnn_cache) = self.model.encoder.forward_chunk(
|
|
|
|
|
# chunk_xs, self.offset, required_cache_size,
|
|
|
|
|
# self.att_cache, self.cnn_cache)
|
|
|
|
|
|
|
|
|
|
(y, self.att_cache, self.cnn_cache) = self.jit_layer.forward_encoder_chunk(
|
|
|
|
|
chunk_xs,
|
|
|
|
|
paddle.to_tensor([self.offset], dtype='int32'),
|
|
|
|
|
self.att_cache,
|
|
|
|
|
self.cnn_cache)
|
|
|
|
|
(y, self.att_cache, self.cnn_cache) = self.model.encoder.forward_chunk(
|
|
|
|
|
chunk_xs, self.offset, required_cache_size,
|
|
|
|
|
self.att_cache, self.cnn_cache)
|
|
|
|
|
|
|
|
|
|
outputs.append(y)
|
|
|
|
|
|
|
|
|
|