parent
3df69e7502
commit
9acc85205a
@ -0,0 +1,83 @@
|
||||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from paddlespeech.t2s.datasets.data_table import DataTable
|
||||
|
||||
|
||||
def find_min_max_spec(spec, min_spec, max_spec):
|
||||
# spec: [T, 80]
|
||||
for i in range(spec.shape[1]):
|
||||
min_value = np.min(spec[:, i])
|
||||
max_value = np.max(spec[:, i])
|
||||
min_spec[i] = min(min_value, min_spec[i])
|
||||
max_spec[i] = max(max_value, max_spec[i])
|
||||
|
||||
return min_spec, max_spec
|
||||
|
||||
|
||||
def main():
|
||||
"""Run preprocessing process."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metadata",
|
||||
type=str,
|
||||
required=True,
|
||||
help="directory including feature files to be normalized. "
|
||||
"you need to specify either *-scp or rootdir.")
|
||||
|
||||
parser.add_argument(
|
||||
"--speech-stretchs",
|
||||
type=str,
|
||||
required=True,
|
||||
help="min max spec file. only computer on train data")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# get dataset
|
||||
with jsonlines.open(args.metadata, 'r') as reader:
|
||||
metadata = list(reader)
|
||||
dataset = DataTable(
|
||||
metadata, converters={
|
||||
"speech": np.load,
|
||||
})
|
||||
logging.info(f"The number of files = {len(dataset)}.")
|
||||
|
||||
n_mel = 80
|
||||
min_spec = 100 * np.ones(shape=(n_mel), dtype=np.float32)
|
||||
max_spec = -100 * np.ones(shape=(n_mel), dtype=np.float32)
|
||||
|
||||
for item in tqdm(dataset):
|
||||
spec = item['speech']
|
||||
min_spec, max_spec = find_min_max_spec(spec, min_spec, max_spec)
|
||||
|
||||
print(min_spec)
|
||||
print(max_spec)
|
||||
|
||||
min_max_spec = np.stack([min_spec, max_spec], axis=0)
|
||||
np.save(
|
||||
str(args.speech_stretchs),
|
||||
min_max_spec.astype(np.float32),
|
||||
allow_pickle=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue