|
|
|
@ -4,6 +4,7 @@ from __future__ import division
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
|
|
import distutils.util
|
|
|
|
|
import sys
|
|
|
|
|
import argparse
|
|
|
|
|
import gzip
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
@ -12,13 +13,19 @@ from model import deep_speech2
|
|
|
|
|
from decoder import *
|
|
|
|
|
from lm.lm_scorer import LmScorer
|
|
|
|
|
from error_rate import wer
|
|
|
|
|
import utils
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--batch_size",
|
|
|
|
|
default=100,
|
|
|
|
|
default=128,
|
|
|
|
|
type=int,
|
|
|
|
|
help="Minibatch size for evaluation. (default: %(default)s)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--trainer_count",
|
|
|
|
|
default=8,
|
|
|
|
|
type=int,
|
|
|
|
|
help="Trainer number. (default: %(default)s)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--num_conv_layers",
|
|
|
|
|
default=2,
|
|
|
|
@ -58,8 +65,8 @@ parser.add_argument(
|
|
|
|
|
"--decode_method",
|
|
|
|
|
default='beam_search',
|
|
|
|
|
type=str,
|
|
|
|
|
help="Method for ctc decoding, best_path or beam_search. (default: %(default)s)"
|
|
|
|
|
)
|
|
|
|
|
help="Method for ctc decoding, best_path or beam_search. "
|
|
|
|
|
"(default: %(default)s)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--language_model_path",
|
|
|
|
|
default="lm/data/common_crawl_00.prune01111.trie.klm",
|
|
|
|
@ -67,12 +74,12 @@ parser.add_argument(
|
|
|
|
|
help="Path for language model. (default: %(default)s)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--alpha",
|
|
|
|
|
default=0.26,
|
|
|
|
|
default=0.36,
|
|
|
|
|
type=float,
|
|
|
|
|
help="Parameter associated with language model. (default: %(default)f)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--beta",
|
|
|
|
|
default=0.1,
|
|
|
|
|
default=0.25,
|
|
|
|
|
type=float,
|
|
|
|
|
help="Parameter associated with word count. (default: %(default)f)")
|
|
|
|
|
parser.add_argument(
|
|
|
|
@ -191,7 +198,7 @@ def evaluate():
|
|
|
|
|
blank_id=len(data_generator.vocab_list),
|
|
|
|
|
num_processes=args.num_processes_beam_search,
|
|
|
|
|
ext_scoring_func=ext_scorer,
|
|
|
|
|
cutoff_prob=args.cutoff_prob, )
|
|
|
|
|
cutoff_prob=args.cutoff_prob)
|
|
|
|
|
for i, beam_search_result in enumerate(beam_search_results):
|
|
|
|
|
wer_sum += wer(target_transcription[i],
|
|
|
|
|
beam_search_result[0][1])
|
|
|
|
@ -199,12 +206,15 @@ def evaluate():
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError("Decoding method [%s] is not supported." %
|
|
|
|
|
decode_method)
|
|
|
|
|
print("WER (%d/?) = %f" % (wer_counter, wer_sum / wer_counter))
|
|
|
|
|
|
|
|
|
|
print("Final WER = %f" % (wer_sum / wer_counter))
|
|
|
|
|
print("Final WER (%d/%d) = %f" % (wer_counter, wer_counter,
|
|
|
|
|
wer_sum / wer_counter))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
|
|
|
|
|
utils.print_arguments(args)
|
|
|
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
|
|
|
|
|
evaluate()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|