Merge pull request #1554 from lym0302/develop

[server] add server cls
pull/1565/head
Hui Zhang 3 years ago committed by GitHub
commit 90deeca06f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -110,21 +110,22 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import ASRClientExecutor
import json
asrclient_executor = ASRClientExecutor()
asrclient_executor(
res = asrclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
sample_rate=16000,
lang="zh_cn",
audio_format="wav")
print(res.json())
```
Output:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'transcription': '我认为跑步最重要的就是给我带来了身体健康'}}
time cost 0.604353 s.
```
### 5. TTS Client Usage
@ -146,7 +147,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- `speed`: Audio speed, the value should be set between 0 and 3. Default: 1.0
- `volume`: Audio volume, the value should be set between 0 and 3. Default: 1.0
- `sample_rate`: Sampling rate, choice: [0, 8000, 16000], the default is the same as the model. Default: 0
- `output`: Output wave filepath. Default: `output.wav`.
- `output`: Output wave filepath. Default: None, which means not to save the audio to the local.
Output:
```bash
@ -160,9 +161,10 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import TTSClientExecutor
import json
ttsclient_executor = TTSClientExecutor()
ttsclient_executor(
res = ttsclient_executor(
input="您好,欢迎使用百度飞桨语音合成服务。",
server_ip="127.0.0.1",
port=8090,
@ -171,6 +173,11 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
volume=1.0,
sample_rate=0,
output="./output.wav")
response_dict = res.json()
print(response_dict["message"])
print("Save synthesized audio successfully on %s." % (response_dict['result']['save_path']))
print("Audio duration: %f s." %(response_dict['result']['duration']))
```
Output:
@ -178,7 +185,52 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
{'description': 'success.'}
Save synthesized audio successfully on ./output.wav.
Audio duration: 3.612500 s.
Response time: 0.388317 s.
```
### 6. CLS Client Usage
**Note:** The response time will be slightly longer when using the client for the first time
- Command Line (Recommended)
```
paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
```
Usage:
```bash
paddlespeech_client cls --help
```
Arguments:
- `server_ip`: server ip. Default: 127.0.0.1
- `port`: server port. Default: 8090
- `input`(required): Audio file to be classified.
- `topk`: topk scores of classification result.
Output:
```bash
[2022-03-09 20:44:39,974] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
[2022-03-09 20:44:39,975] [ INFO] - Response time 0.104360 s.
```
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import CLSClientExecutor
import json
clsclient_executor = CLSClientExecutor()
res = clsclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
topk=1)
print(res.json())
```
Output:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
```
@ -189,3 +241,6 @@ Get all models supported by the ASR service via `paddlespeech_server stats --tas
### TTS model
Get all models supported by the TTS service via `paddlespeech_server stats --task tts`, where static models can be used for paddle inference inference.
### CLS model
Get all models supported by the CLS service via `paddlespeech_server stats --task cls`, where static models can be used for paddle inference inference.

@ -80,7 +80,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
```
### 4. ASR客户端使用方法
### 4. ASR 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
```
@ -111,25 +111,26 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import ASRClientExecutor
import json
asrclient_executor = ASRClientExecutor()
asrclient_executor(
res = asrclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
sample_rate=16000,
lang="zh_cn",
audio_format="wav")
print(res.json())
```
输出:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'transcription': '我认为跑步最重要的就是给我带来了身体健康'}}
time cost 0.604353 s.
```
### 5. TTS客户端使用方法
### 5. TTS 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
@ -150,7 +151,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- `speed`: 音频速度,该值应设置在 0 到 3 之间。 默认值1.0
- `volume`: 音频音量,该值应设置在 0 到 3 之间。 默认值: 1.0
- `sample_rate`: 采样率,可选 [0, 8000, 16000],默认与模型相同。 默认值0
- `output`: 输出音频的路径, 默认值:output.wav
- `output`: 输出音频的路径, 默认值:None表示不保存音频到本地
输出:
```bash
@ -163,9 +164,10 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import TTSClientExecutor
import json
ttsclient_executor = TTSClientExecutor()
ttsclient_executor(
res = ttsclient_executor(
input="您好,欢迎使用百度飞桨语音合成服务。",
server_ip="127.0.0.1",
port=8090,
@ -174,6 +176,11 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
volume=1.0,
sample_rate=0,
output="./output.wav")
response_dict = res.json()
print(response_dict["message"])
print("Save synthesized audio successfully on %s." % (response_dict['result']['save_path']))
print("Audio duration: %f s." %(response_dict['result']['duration']))
```
输出:
@ -181,13 +188,63 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
{'description': 'success.'}
Save synthesized audio successfully on ./output.wav.
Audio duration: 3.612500 s.
Response time: 0.388317 s.
```
### 5. CLS 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
```
paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
```
使用帮助:
```bash
paddlespeech_client cls --help
```
参数:
- `server_ip`: 服务端ip地址默认: 127.0.0.1。
- `port`: 服务端口,默认: 8090。
- `input`(必须输入): 用于分类的音频文件。
- `topk`: 分类结果的topk。
输出:
```bash
[2022-03-09 20:44:39,974] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
[2022-03-09 20:44:39,975] [ INFO] - Response time 0.104360 s.
```
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import CLSClientExecutor
import json
clsclient_executor = CLSClientExecutor()
res = clsclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
topk=1)
print(res.json())
```
输出:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
```
## 服务支持的模型
### ASR支持的模型
通过 `paddlespeech_server stats --task asr` 获取ASR服务支持的所有模型其中静态模型可用于 paddle inference 推理。
### TTS支持的模型
通过 `paddlespeech_server stats --task tts` 获取TTS服务支持的所有模型其中静态模型可用于 paddle inference 推理。
### CLS支持的模型
通过 `paddlespeech_server stats --task cls` 获取CLS服务支持的所有模型其中静态模型可用于 paddle inference 推理。

@ -0,0 +1,4 @@
#!/bin/bash
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav --topk 1

@ -9,12 +9,14 @@ port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_python', 'asr_inference', 'tts_python', 'tts_inference']
engine_list: ['asr_python', 'tts_python']
engine_list: ['asr_python', 'tts_python', 'cls_python']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: python #######################
asr_python:
model: 'conformer_wenetspeech'
@ -46,6 +48,7 @@ asr_inference:
summary: True # False -> do not show predictor config
################################### TTS #########################################
################### speech task: tts; engine_type: python #######################
tts_python:
# am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc',
@ -105,3 +108,30 @@ tts_inference:
# others
lang: 'zh'
################################### CLS #########################################
################### speech task: cls; engine_type: python #######################
cls_python:
# model choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
model: 'panns_cnn14'
cfg_path: # [optional] Config of cls task.
ckpt_path: # [optional] Checkpoint file of model.
label_file: # [optional] Label file of cls task.
device: # set 'gpu:id' or 'cpu'
################### speech task: cls; engine_type: inference #######################
cls_inference:
# model_type choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
model_type: 'panns_cnn14'
cfg_path:
model_path: # the pdmodel file of am static model [optional]
params_path: # the pdiparams file of am static model [optional]
label_file: # [optional] Label file of cls task.
predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config

@ -59,7 +59,7 @@ WaveRNN | CSMSC |[WaveRNN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tr
### Voice Cloning
Model Type | Dataset| Example Link | Pretrained Models
:-------------:| :------------:| :-----: | :-----:
:-------------:| :------------:| :-----: | :-----: |
GE2E| AISHELL-3, etc. |[ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e)|[ge2e_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ge2e/ge2e_ckpt_0.3.zip)
GE2E + Tactron2| AISHELL-3 |[ge2e-tactron2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc0)|[tacotron2_aishell3_ckpt_vc0_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_vc0_0.2.0.zip)
GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc1)|[fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip)
@ -67,9 +67,9 @@ GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/
## Audio Classification Models
Model Type | Dataset| Example Link | Pretrained Models
:-------------:| :------------:| :-----: | :-----:
PANN | Audioset| [audioset_tagging_cnn](https://github.com/qiuqiangkong/audioset_tagging_cnn) | [panns_cnn6.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams), [panns_cnn10.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams), [panns_cnn14.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams)
Model Type | Dataset| Example Link | Pretrained Models | Static Models
:-------------:| :------------:| :-----: | :-----: | :-----:
PANN | Audioset| [audioset_tagging_cnn](https://github.com/qiuqiangkong/audioset_tagging_cnn) | [panns_cnn6.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams), [panns_cnn10.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams), [panns_cnn14.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams) | [panns_cnn6_static.tar.gz](https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn6_static.tar.gz)(18M), [panns_cnn10_static.tar.gz](https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn10_static.tar.gz)(19M), [panns_cnn14_static.tar.gz](https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn14_static.tar.gz)(289M)
PANN | ESC-50 |[pann-esc50](../../examples/esc50/cls0)|[esc50_cnn6.tar.gz](https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn6.tar.gz), [esc50_cnn10.tar.gz](https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn10.tar.gz), [esc50_cnn14.tar.gz](https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn14.tar.gz)
## Punctuation Restoration Models

@ -193,7 +193,8 @@ class CLSExecutor(BaseExecutor):
sr=feat_conf['sample_rate'],
mono=True,
dtype='float32')
logger.info("Preprocessing audio_file:" + audio_file)
if isinstance(audio_file, (str, os.PathLike)):
logger.info("Preprocessing audio_file:" + audio_file)
# Feature extraction
feature_extractor = LogMelSpectrogram(

@ -18,6 +18,7 @@ from .base_commands import ClientHelpCommand
from .base_commands import ServerBaseCommand
from .base_commands import ServerHelpCommand
from .bin.paddlespeech_client import ASRClientExecutor
from .bin.paddlespeech_client import CLSClientExecutor
from .bin.paddlespeech_client import TTSClientExecutor
from .bin.paddlespeech_server import ServerExecutor

@ -31,7 +31,7 @@ from paddlespeech.cli.log import logger
from paddlespeech.server.utils.audio_process import wav2pcm
from paddlespeech.server.utils.util import wav2base64
__all__ = ['TTSClientExecutor', 'ASRClientExecutor']
__all__ = ['TTSClientExecutor', 'ASRClientExecutor', 'CLSClientExecutor']
@cli_client_register(
@ -70,13 +70,9 @@ class TTSClientExecutor(BaseExecutor):
choices=[0, 8000, 16000],
help='Sampling rate, the default is the same as the model')
self.parser.add_argument(
'--output',
type=str,
default="./output.wav",
help='Synthesized audio file')
'--output', type=str, default=None, help='Synthesized audio file')
def postprocess(self, response_dict: dict, outfile: str) -> float:
wav_base64 = response_dict["result"]["audio"]
def postprocess(self, wav_base64: str, outfile: str) -> float:
audio_data_byte = base64.b64decode(wav_base64)
# from byte
samples, sample_rate = soundfile.read(
@ -93,37 +89,38 @@ class TTSClientExecutor(BaseExecutor):
else:
logger.error("The format for saving audio only supports wav or pcm")
duration = len(samples) / sample_rate
return duration
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
try:
url = 'http://' + args.server_ip + ":" + str(
args.port) + '/paddlespeech/tts'
request = {
"text": args.input,
"spk_id": args.spk_id,
"speed": args.speed,
"volume": args.volume,
"sample_rate": args.sample_rate,
"save_path": args.output
}
st = time.time()
response = requests.post(url, json.dumps(request))
time_consume = time.time() - st
response_dict = response.json()
duration = self.postprocess(response_dict, args.output)
input_ = args.input
server_ip = args.server_ip
port = args.port
spk_id = args.spk_id
speed = args.speed
volume = args.volume
sample_rate = args.sample_rate
output = args.output
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
spk_id=spk_id,
speed=speed,
volume=volume,
sample_rate=sample_rate,
output=output)
time_end = time.time()
time_consume = time_end - time_start
response_dict = res.json()
logger.info(response_dict["message"])
logger.info("Save synthesized audio successfully on %s." %
(args.output))
logger.info("Audio duration: %f s." % (duration))
logger.info("Save synthesized audio successfully on %s." % (output))
logger.info("Audio duration: %f s." %
(response_dict['result']['duration']))
logger.info("Response time: %f s." % (time_consume))
return True
except BaseException:
except Exception as e:
logger.error("Failed to synthesized audio.")
return False
@ -136,7 +133,7 @@ class TTSClientExecutor(BaseExecutor):
speed: float=1.0,
volume: float=1.0,
sample_rate: int=0,
output: str="./output.wav"):
output: str=None):
"""
Python API to call an executor.
"""
@ -151,20 +148,11 @@ class TTSClientExecutor(BaseExecutor):
"save_path": output
}
try:
st = time.time()
response = requests.post(url, json.dumps(request))
time_consume = time.time() - st
response_dict = response.json()
duration = self.postprocess(response_dict, output)
print(response_dict["message"])
print("Save synthesized audio successfully on %s." % (output))
print("Audio duration: %f s." % (duration))
print("Response time: %f s." % (time_consume))
print("RTF: %f " % (time_consume / duration))
except BaseException:
print("Failed to synthesized audio.")
res = requests.post(url, json.dumps(request))
response_dict = res.json()
if not output:
self.postprocess(response_dict["result"]["audio"], output)
return res
@cli_client_register(
@ -193,24 +181,27 @@ class ASRClientExecutor(BaseExecutor):
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
url = 'http://' + args.server_ip + ":" + str(
args.port) + '/paddlespeech/asr'
audio = wav2base64(args.input)
data = {
"audio": audio,
"audio_format": args.audio_format,
"sample_rate": args.sample_rate,
"lang": args.lang,
}
time_start = time.time()
input_ = args.input
server_ip = args.server_ip
port = args.port
sample_rate = args.sample_rate
lang = args.lang
audio_format = args.audio_format
try:
r = requests.post(url=url, data=json.dumps(data))
# ending Timestamp
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
sample_rate=sample_rate,
lang=lang,
audio_format=audio_format)
time_end = time.time()
logger.info(r.json())
logger.info("time cost %f s." % (time_end - time_start))
logger.info(res.json())
logger.info("Response time %f s." % (time_end - time_start))
return True
except BaseException:
except Exception as e:
logger.error("Failed to speech recognition.")
return False
@ -234,12 +225,65 @@ class ASRClientExecutor(BaseExecutor):
"sample_rate": sample_rate,
"lang": lang,
}
time_start = time.time()
res = requests.post(url=url, data=json.dumps(data))
return res
@cli_client_register(
name='paddlespeech_client.cls', description='visit cls service')
class CLSClientExecutor(BaseExecutor):
def __init__(self):
super(CLSClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.cls', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to classify.',
required=True)
self.parser.add_argument(
'--topk',
type=int,
default=1,
help='Return topk scores of classification result.')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
topk = args.topk
try:
r = requests.post(url=url, data=json.dumps(data))
# ending Timestamp
time_start = time.time()
res = self(input=input_, server_ip=server_ip, port=port, topk=topk)
time_end = time.time()
print(r.json())
print("time cost %f s." % (time_end - time_start))
except BaseException:
print("Failed to speech recognition.")
logger.info(res.json())
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech classification.")
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
topk: int=1):
"""
Python API to call an executor.
"""
url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/cls'
audio = wav2base64(input)
data = {"audio": audio, "topk": topk}
res = requests.post(url=url, data=json.dumps(data))
return res

@ -103,13 +103,14 @@ class ServerStatsExecutor():
'--task',
type=str,
default=None,
choices=['asr', 'tts'],
choices=['asr', 'tts', 'cls'],
help='Choose speech task.',
required=True)
self.task_choices = ['asr', 'tts']
self.task_choices = ['asr', 'tts', 'cls']
self.model_name_format = {
'asr': 'Model-Language-Sample Rate',
'tts': 'Model-Language'
'tts': 'Model-Language',
'cls': 'Model-Sample Rate'
}
def show_support_models(self, pretrained_models: dict):
@ -173,54 +174,25 @@ class ServerStatsExecutor():
"Failed to get the table of TTS pretrained models supported in the service."
)
return False
@stats_wrapper
def __call__(
self,
task: str=None, ):
"""
Python API to call an executor.
"""
self.task = task
if self.task not in self.task_choices:
print("Please input correct speech task, choices = ['asr', 'tts']")
elif self.task == 'asr':
elif self.task == 'cls':
try:
from paddlespeech.cli.asr.infer import pretrained_models
print(
"Here is the table of ASR pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
# show ASR static pretrained model
from paddlespeech.server.engine.asr.paddleinference.asr_engine import pretrained_models
print(
"Here is the table of ASR static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
except BaseException:
print(
"Failed to get the table of ASR pretrained models supported in the service."
)
elif self.task == 'tts':
try:
from paddlespeech.cli.tts.infer import pretrained_models
print(
"Here is the table of TTS pretrained models supported in the service."
from paddlespeech.cli.cls.infer import pretrained_models
logger.info(
"Here is the table of CLS pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
# show TTS static pretrained model
from paddlespeech.server.engine.tts.paddleinference.tts_engine import pretrained_models
print(
"Here is the table of TTS static pretrained models supported in the service."
# show CLS static pretrained model
from paddlespeech.server.engine.cls.paddleinference.cls_engine import pretrained_models
logger.info(
"Here is the table of CLS static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
return True
except BaseException:
print(
"Failed to get the table of TTS pretrained models supported in the service."
logger.error(
"Failed to get the table of CLS pretrained models supported in the service."
)
return False

@ -9,12 +9,14 @@ port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_python', 'asr_inference', 'tts_python', 'tts_inference']
engine_list: ['asr_python', 'tts_python']
engine_list: ['asr_python', 'tts_python', 'cls_python']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: python #######################
asr_python:
model: 'conformer_wenetspeech'
@ -46,6 +48,7 @@ asr_inference:
summary: True # False -> do not show predictor config
################################### TTS #########################################
################### speech task: tts; engine_type: python #######################
tts_python:
# am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc',
@ -105,3 +108,30 @@ tts_inference:
# others
lang: 'zh'
################################### CLS #########################################
################### speech task: cls; engine_type: python #######################
cls_python:
# model choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
model: 'panns_cnn14'
cfg_path: # [optional] Config of cls task.
ckpt_path: # [optional] Checkpoint file of model.
label_file: # [optional] Label file of cls task.
device: # set 'gpu:id' or 'cpu'
################### speech task: cls; engine_type: inference #######################
cls_inference:
# model_type choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
model_type: 'panns_cnn14'
cfg_path:
model_path: # the pdmodel file of am static model [optional]
params_path: # the pdiparams file of am static model [optional]
label_file: # [optional] Label file of cls task.
predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config

@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,224 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
import time
from typing import Optional
import numpy as np
import paddle
import yaml
from paddlespeech.cli.cls.infer import CLSExecutor
from paddlespeech.cli.log import logger
from paddlespeech.cli.utils import download_and_decompress
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.paddle_predictor import init_predictor
from paddlespeech.server.utils.paddle_predictor import run_model
__all__ = ['CLSEngine']
pretrained_models = {
"panns_cnn6-32k": {
'url':
'https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn6_static.tar.gz',
'md5':
'da087c31046d23281d8ec5188c1967da',
'cfg_path':
'panns.yaml',
'model_path':
'inference.pdmodel',
'params_path':
'inference.pdiparams',
'label_file':
'audioset_labels.txt',
},
"panns_cnn10-32k": {
'url':
'https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn10_static.tar.gz',
'md5':
'5460cc6eafbfaf0f261cc75b90284ae1',
'cfg_path':
'panns.yaml',
'model_path':
'inference.pdmodel',
'params_path':
'inference.pdiparams',
'label_file':
'audioset_labels.txt',
},
"panns_cnn14-32k": {
'url':
'https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn14_static.tar.gz',
'md5':
'ccc80b194821274da79466862b2ab00f',
'cfg_path':
'panns.yaml',
'model_path':
'inference.pdmodel',
'params_path':
'inference.pdiparams',
'label_file':
'audioset_labels.txt',
},
}
class CLSServerExecutor(CLSExecutor):
def __init__(self):
super().__init__()
pass
def _get_pretrained_path(self, tag: str) -> os.PathLike:
"""
Download and returns pretrained resources path of current task.
"""
support_models = list(pretrained_models.keys())
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
res_path)
decompressed_path = os.path.abspath(decompressed_path)
logger.info(
'Use pretrained model stored in: {}'.format(decompressed_path))
return decompressed_path
def _init_from_path(
self,
model_type: str='panns_cnn14',
cfg_path: Optional[os.PathLike]=None,
model_path: Optional[os.PathLike]=None,
params_path: Optional[os.PathLike]=None,
label_file: Optional[os.PathLike]=None,
predictor_conf: dict=None, ):
"""
Init model and other resources from a specific path.
"""
if cfg_path is None or model_path is None or params_path is None or label_file is None:
tag = model_type + '-' + '32k'
self.res_path = self._get_pretrained_path(tag)
self.cfg_path = os.path.join(self.res_path,
pretrained_models[tag]['cfg_path'])
self.model_path = os.path.join(self.res_path,
pretrained_models[tag]['model_path'])
self.params_path = os.path.join(
self.res_path, pretrained_models[tag]['params_path'])
self.label_file = os.path.join(self.res_path,
pretrained_models[tag]['label_file'])
else:
self.cfg_path = os.path.abspath(cfg_path)
self.model_path = os.path.abspath(model_path)
self.params_path = os.path.abspath(params_path)
self.label_file = os.path.abspath(label_file)
logger.info(self.cfg_path)
logger.info(self.model_path)
logger.info(self.params_path)
logger.info(self.label_file)
# config
with open(self.cfg_path, 'r') as f:
self._conf = yaml.safe_load(f)
logger.info("Read cfg file successfully.")
# labels
self._label_list = []
with open(self.label_file, 'r') as f:
for line in f:
self._label_list.append(line.strip())
logger.info("Read label file successfully.")
# Create predictor
self.predictor_conf = predictor_conf
self.predictor = init_predictor(
model_file=self.model_path,
params_file=self.params_path,
predictor_conf=self.predictor_conf)
logger.info("Create predictor successfully.")
@paddle.no_grad()
def infer(self):
"""
Model inference and result stored in self.output.
"""
output = run_model(self.predictor, [self._inputs['feats'].numpy()])
self._outputs['logits'] = output[0]
class CLSEngine(BaseEngine):
"""CLS server engine
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(CLSEngine, self).__init__()
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.executor = CLSServerExecutor()
self.config = config
self.executor._init_from_path(
self.config.model_type, self.config.cfg_path,
self.config.model_path, self.config.params_path,
self.config.label_file, self.config.predictor_conf)
logger.info("Initialize CLS server engine successfully.")
return True
def run(self, audio_data):
"""engine run
Args:
audio_data (bytes): base64.b64decode
"""
self.executor.preprocess(io.BytesIO(audio_data))
st = time.time()
self.executor.infer()
infer_time = time.time() - st
logger.info("inference time: {}".format(infer_time))
logger.info("cls engine type: inference")
def postprocess(self, topk: int):
"""postprocess
"""
assert topk <= len(self.executor._label_list
), 'Value of topk is larger than number of labels.'
result = np.squeeze(self.executor._outputs['logits'], axis=0)
topk_idx = (-result).argsort()[:topk]
topk_results = []
for idx in topk_idx:
res = {}
label, score = self.executor._label_list[idx], result[idx]
res['class_name'] = label
res['prob'] = score
topk_results.append(res)
return topk_results

@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,124 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import time
from typing import List
import paddle
from paddlespeech.cli.cls.infer import CLSExecutor
from paddlespeech.cli.log import logger
from paddlespeech.server.engine.base_engine import BaseEngine
__all__ = ['CLSEngine']
class CLSServerExecutor(CLSExecutor):
def __init__(self):
super().__init__()
pass
def get_topk_results(self, topk: int) -> List:
assert topk <= len(
self._label_list), 'Value of topk is larger than number of labels.'
result = self._outputs['logits'].squeeze(0).numpy()
topk_idx = (-result).argsort()[:topk]
res = {}
topk_results = []
for idx in topk_idx:
label, score = self._label_list[idx], result[idx]
res['class'] = label
res['prob'] = score
topk_results.append(res)
return topk_results
class CLSEngine(BaseEngine):
"""CLS server engine
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(CLSEngine, self).__init__()
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.input = None
self.output = None
self.executor = CLSServerExecutor()
self.config = config
try:
if self.config.device:
self.device = self.config.device
else:
self.device = paddle.get_device()
paddle.set_device(self.device)
except BaseException:
logger.error(
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
)
try:
self.executor._init_from_path(
self.config.model, self.config.cfg_path, self.config.ckpt_path,
self.config.label_file)
except BaseException:
logger.error("Initialize CLS server engine Failed.")
return False
logger.info("Initialize CLS server engine successfully on device: %s." %
(self.device))
return True
def run(self, audio_data):
"""engine run
Args:
audio_data (bytes): base64.b64decode
"""
self.executor.preprocess(io.BytesIO(audio_data))
st = time.time()
self.executor.infer()
infer_time = time.time() - st
logger.info("inference time: {}".format(infer_time))
logger.info("cls engine type: python")
def postprocess(self, topk: int):
"""postprocess
"""
assert topk <= len(self.executor._label_list
), 'Value of topk is larger than number of labels.'
result = self.executor._outputs['logits'].squeeze(0).numpy()
topk_idx = (-result).argsort()[:topk]
topk_results = []
for idx in topk_idx:
res = {}
label, score = self.executor._label_list[idx], result[idx]
res['class_name'] = label
res['prob'] = score
topk_results.append(res)
return topk_results

@ -31,5 +31,11 @@ class EngineFactory(object):
elif engine_name == 'tts' and engine_type == 'python':
from paddlespeech.server.engine.tts.python.tts_engine import TTSEngine
return TTSEngine()
elif engine_name == 'cls' and engine_type == 'inference':
from paddlespeech.server.engine.cls.paddleinference.cls_engine import CLSEngine
return CLSEngine()
elif engine_name == 'cls' and engine_type == 'python':
from paddlespeech.server.engine.cls.python.cls_engine import CLSEngine
return CLSEngine()
else:
return None

@ -250,27 +250,21 @@ class TTSServerExecutor(TTSExecutor):
self.frontend = English(phone_vocab_path=self.phones_dict)
logger.info("frontend done!")
try:
# am predictor
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
logger.info("Create AM predictor successfully.")
except BaseException:
logger.error("Failed to create AM predictor.")
try:
# voc predictor
self.voc_predictor_conf = voc_predictor_conf
self.voc_predictor = init_predictor(
model_file=self.voc_model,
params_file=self.voc_params,
predictor_conf=self.voc_predictor_conf)
logger.info("Create Vocoder predictor successfully.")
except BaseException:
logger.error("Failed to create Vocoder predictor.")
# Create am predictor
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
logger.info("Create AM predictor successfully.")
# Create voc predictor
self.voc_predictor_conf = voc_predictor_conf
self.voc_predictor = init_predictor(
model_file=self.voc_model,
params_file=self.voc_params,
predictor_conf=self.voc_predictor_conf)
logger.info("Create Vocoder predictor successfully.")
@paddle.no_grad()
def infer(self,
@ -359,27 +353,22 @@ class TTSEngine(BaseEngine):
def init(self, config: dict) -> bool:
self.executor = TTSServerExecutor()
try:
self.config = config
self.executor._init_from_path(
am=self.config.am,
am_model=self.config.am_model,
am_params=self.config.am_params,
am_sample_rate=self.config.am_sample_rate,
phones_dict=self.config.phones_dict,
tones_dict=self.config.tones_dict,
speaker_dict=self.config.speaker_dict,
voc=self.config.voc,
voc_model=self.config.voc_model,
voc_params=self.config.voc_params,
voc_sample_rate=self.config.voc_sample_rate,
lang=self.config.lang,
am_predictor_conf=self.config.am_predictor_conf,
voc_predictor_conf=self.config.voc_predictor_conf, )
except BaseException:
logger.error("Initialize TTS server engine Failed.")
return False
self.config = config
self.executor._init_from_path(
am=self.config.am,
am_model=self.config.am_model,
am_params=self.config.am_params,
am_sample_rate=self.config.am_sample_rate,
phones_dict=self.config.phones_dict,
tones_dict=self.config.tones_dict,
speaker_dict=self.config.speaker_dict,
voc=self.config.voc,
voc_model=self.config.voc_model,
voc_params=self.config.voc_params,
voc_sample_rate=self.config.voc_sample_rate,
lang=self.config.lang,
am_predictor_conf=self.config.am_predictor_conf,
voc_predictor_conf=self.config.voc_predictor_conf, )
logger.info("Initialize TTS server engine successfully.")
return True
@ -542,4 +531,4 @@ class TTSEngine(BaseEngine):
postprocess_time))
logger.info("RTF: {}".format(rtf))
return lang, target_sample_rate, wav_base64
return lang, target_sample_rate, duration, wav_base64

@ -250,4 +250,4 @@ class TTSEngine(BaseEngine):
logger.info("RTF: {}".format(rtf))
logger.info("device: {}".format(self.device))
return lang, target_sample_rate, wav_base64
return lang, target_sample_rate, duration, wav_base64

@ -16,6 +16,7 @@ from typing import List
from fastapi import APIRouter
from paddlespeech.server.restful.asr_api import router as asr_router
from paddlespeech.server.restful.cls_api import router as cls_router
from paddlespeech.server.restful.tts_api import router as tts_router
_router = APIRouter()
@ -25,7 +26,7 @@ def setup_router(api_list: List):
"""setup router for fastapi
Args:
api_list (List): [asr, tts]
api_list (List): [asr, tts, cls]
Returns:
APIRouter
@ -35,6 +36,8 @@ def setup_router(api_list: List):
_router.include_router(asr_router)
elif api_name == 'tts':
_router.include_router(tts_router)
elif api_name == 'cls':
_router.include_router(cls_router)
else:
pass

@ -0,0 +1,92 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import traceback
from typing import Union
from fastapi import APIRouter
from paddlespeech.server.engine.engine_pool import get_engine_pool
from paddlespeech.server.restful.request import CLSRequest
from paddlespeech.server.restful.response import CLSResponse
from paddlespeech.server.restful.response import ErrorResponse
from paddlespeech.server.utils.errors import ErrorCode
from paddlespeech.server.utils.errors import failed_response
from paddlespeech.server.utils.exception import ServerBaseException
router = APIRouter()
@router.get('/paddlespeech/cls/help')
def help():
"""help
Returns:
json: [description]
"""
response = {
"success": "True",
"code": 200,
"message": {
"global": "success"
},
"result": {
"description": "cls server",
"input": "base64 string of wavfile",
"output": "classification result"
}
}
return response
@router.post(
"/paddlespeech/cls", response_model=Union[CLSResponse, ErrorResponse])
def cls(request_body: CLSRequest):
"""cls api
Args:
request_body (CLSRequest): [description]
Returns:
json: [description]
"""
try:
audio_data = base64.b64decode(request_body.audio)
# get single engine from engine pool
engine_pool = get_engine_pool()
cls_engine = engine_pool['cls']
cls_engine.run(audio_data)
cls_results = cls_engine.postprocess(request_body.topk)
response = {
"success": True,
"code": 200,
"message": {
"description": "success"
},
"result": {
"topk": request_body.topk,
"results": cls_results
}
}
except ServerBaseException as e:
response = failed_response(e.error_code, e.msg)
except BaseException:
response = failed_response(ErrorCode.SERVER_UNKOWN_ERR)
traceback.print_exc()
return response

@ -15,7 +15,7 @@ from typing import Optional
from pydantic import BaseModel
__all__ = ['ASRRequest', 'TTSRequest']
__all__ = ['ASRRequest', 'TTSRequest', 'CLSRequest']
#****************************************************************************************/
@ -63,3 +63,18 @@ class TTSRequest(BaseModel):
volume: float = 1.0
sample_rate: int = 0
save_path: str = None
#****************************************************************************************/
#************************************ CLS request ***************************************/
#****************************************************************************************/
class CLSRequest(BaseModel):
"""
request body example
{
"audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...",
"topk": 1
}
"""
audio: str
topk: int = 1

@ -11,9 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
from pydantic import BaseModel
__all__ = ['ASRResponse', 'TTSResponse']
__all__ = ['ASRResponse', 'TTSResponse', 'CLSResponse']
class Message(BaseModel):
@ -52,10 +54,11 @@ class ASRResponse(BaseModel):
#****************************************************************************************/
class TTSResult(BaseModel):
lang: str = "zh"
sample_rate: int
spk_id: int = 0
speed: float = 1.0
volume: float = 1.0
sample_rate: int
duration: float
save_path: str = None
audio: str
@ -71,9 +74,11 @@ class TTSResponse(BaseModel):
},
"result": {
"lang": "zh",
"sample_rate": 24000,
"spk_id": 0,
"speed": 1.0,
"volume": 1.0,
"sample_rate": 24000,
"duration": 3.6125,
"audio": "LTI1OTIuNjI1OTUwMzQsOTk2OS41NDk4...",
"save_path": "./tts.wav"
}
@ -85,6 +90,45 @@ class TTSResponse(BaseModel):
result: TTSResult
#****************************************************************************************/
#************************************ CLS response **************************************/
#****************************************************************************************/
class CLSResults(BaseModel):
class_name: str
prob: float
class CLSResult(BaseModel):
topk: int
results: List[CLSResults]
class CLSResponse(BaseModel):
"""
response example
{
"success": true,
"code": 0,
"message": {
"description": "success"
},
"result": {
topk: 1
results: [
{
"class":"Speech",
"prob": 0.9027184844017029
}
]
}
}
"""
success: bool
code: int
message: Message
result: CLSResult
#****************************************************************************************/
#********************************** Error response **************************************/
#****************************************************************************************/

@ -98,7 +98,7 @@ def tts(request_body: TTSRequest):
tts_engine = engine_pool['tts']
logger.info("Get tts engine successfully.")
lang, target_sample_rate, wav_base64 = tts_engine.run(
lang, target_sample_rate, duration, wav_base64 = tts_engine.run(
text, spk_id, speed, volume, sample_rate, save_path)
response = {
@ -113,6 +113,7 @@ def tts(request_body: TTSRequest):
"speed": speed,
"volume": volume,
"sample_rate": target_sample_rate,
"duration": duration,
"save_path": save_path,
"audio": wav_base64
}

@ -35,10 +35,12 @@ def init_predictor(model_dir: Optional[os.PathLike]=None,
Returns:
predictor (PaddleInferPredictor): created predictor
"""
if model_dir is not None:
assert os.path.isdir(model_dir), 'Please check model dir.'
config = Config(args.model_dir)
else:
assert os.path.isfile(model_file) and os.path.isfile(
params_file), 'Please check model and parameter files.'
config = Config(model_file, params_file)
# set device
@ -66,7 +68,6 @@ def init_predictor(model_dir: Optional[os.PathLike]=None,
config.enable_memory_optim()
predictor = create_predictor(config)
return predictor
@ -84,10 +85,8 @@ def run_model(predictor, input: List) -> List:
for i, name in enumerate(input_names):
input_handle = predictor.get_input_handle(name)
input_handle.copy_from_cpu(input[i])
# do the inference
predictor.run()
results = []
# get out data from output tensor
output_names = predictor.get_output_names()

@ -25,13 +25,15 @@ def change_device(yamlfile: str, engine: str, device: str):
with open(tmp_yamlfile) as f, open(yamlfile, "w+", encoding="utf-8") as fw:
y = yaml.safe_load(f)
if engine == 'asr_python' or engine == 'tts_python':
if engine == 'asr_python' or engine == 'tts_python' or engine == 'cls_python':
y[engine]['device'] = set_device
elif engine == 'asr_inference':
y[engine]['am_predictor_conf']['device'] = set_device
elif engine == 'tts_inference':
y[engine]['am_predictor_conf']['device'] = set_device
y[engine]['voc_predictor_conf']['device'] = set_device
elif engine == 'cls_inference':
y[engine]['predictor_conf']['device'] = set_device
else:
print(
"Please set correct engine: asr_python, tts_python, asr_inference, tts_inference."
@ -84,6 +86,8 @@ if __name__ == "__main__":
'enginetype-asr_inference',
'enginetype-tts_python',
'enginetype-tts_inference',
'enginetype-cls_python',
'enginetype-cls_inference',
'device-asr_python-cpu',
'device-asr_python-gpu',
'device-asr_inference-cpu',
@ -92,6 +96,10 @@ if __name__ == "__main__":
'device-tts_python-gpu',
'device-tts_inference-cpu',
'device-tts_inference-gpu',
'device-cls_python-cpu',
'device-cls_python-gpu',
'device-cls_inference-cpu',
'device-cls_inference-gpu',
],
required=True)
args = parser.parse_args()

@ -9,12 +9,14 @@ port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_python', 'asr_inference', 'tts_python', 'tts_inference']
engine_list: ['asr_python', 'tts_python']
engine_list: ['asr_python', 'tts_python', 'cls_python']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: python #######################
asr_python:
model: 'conformer_wenetspeech'
@ -46,6 +48,7 @@ asr_inference:
summary: True # False -> do not show predictor config
################################### TTS #########################################
################### speech task: tts; engine_type: python #######################
tts_python:
# am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc',
@ -105,3 +108,30 @@ tts_inference:
# others
lang: 'zh'
################################### CLS #########################################
################### speech task: cls; engine_type: python #######################
cls_python:
# model choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
model: 'panns_cnn14'
cfg_path: # [optional] Config of cls task.
ckpt_path: # [optional] Checkpoint file of model.
label_file: # [optional] Label file of cls task.
device: # set 'gpu:id' or 'cpu'
################### speech task: cls; engine_type: inference #######################
cls_inference:
# model_type choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
model_type: 'panns_cnn14'
cfg_path:
model_path: # the pdmodel file of am static model [optional]
params_path: # the pdiparams file of am static model [optional]
label_file: # [optional] Label file of cls task.
predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config

@ -33,15 +33,21 @@ ClientTest(){
((test_times+=1))
paddlespeech_client tts --server_ip $server_ip --port $port --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav
((test_times+=1))
# test cls client
paddlespeech_client cls --server_ip $server_ip --port $port --input ./zh.wav
((test_times+=1))
paddlespeech_client cls --server_ip $server_ip --port $port --input ./zh.wav
((test_times+=1))
}
GetTestResult() {
# Determine if the test was successful
response_success_time=$(cat log/server.log | grep "200 OK" -c)
if (( $response_success_time == $test_times )) ; then
echo "Testing successfully. The service configuration is: asr engine type: $1; tts engine type: $1; device: $2." | tee -a ./log/test_result.log
echo "Testing successfully. The service configuration is: asr engine type: $1; tts engine type: $1; cls engine type: $1; device: $2." | tee -a ./log/test_result.log
else
echo "Testing failed. The service configuration is: asr engine type: $1; tts engine type: $1; device: $2." | tee -a ./log/test_result.log
echo "Testing failed. The service configuration is: asr engine type: $1; tts engine type: $1; cls engine type: $1; device: $2." | tee -a ./log/test_result.log
fi
test_times=$response_success_time
}
@ -74,8 +80,8 @@ target_start_num=0 # the number of start service
test_times=0 # The number of client test
error_time=0 # The number of error occurrences in the startup failure server.log.wf file
# start server: asr engine type: python; tts engine type: python; device: gpu
echo "Start the service: asr engine type: python; tts engine type: python; device: gpu" | tee -a ./log/test_result.log
# start server: asr engine type: python; tts engine type: python; cls engine type: python; device: gpu
echo "Start the service: asr engine type: python; tts engine type: python; cls engine type: python; device: gpu" | tee -a ./log/test_result.log
((target_start_num+=1))
StartService
@ -98,11 +104,12 @@ echo "**************************************************************************
# start server: asr engine type: python; tts engine type: python; device: cpu
python change_yaml.py --change_task device-asr_python-cpu # change asr.yaml device: cpu
python change_yaml.py --change_task device-tts_python-cpu # change tts.yaml device: cpu
# start server: asr engine type: python; tts engine type: python; cls engine type: python; device: cpu
python change_yaml.py --change_task device-asr_python-cpu # change asr_python device: cpu
python change_yaml.py --change_task device-tts_python-cpu # change tts_python device: cpu
python change_yaml.py --change_task device-cls_python-cpu # change cls_python device: cpu
echo "Start the service: asr engine type: python; tts engine type: python; device: cpu" | tee -a ./log/test_result.log
echo "Start the service: asr engine type: python; tts engine type: python; cls engine type: python; device: cpu" | tee -a ./log/test_result.log
((target_start_num+=1))
StartService
@ -124,11 +131,12 @@ sleep 2s
echo "**************************************************************************************" | tee -a ./log/test_result.log
# start server: asr engine type: inference; tts engine type: inference; device: gpu
python change_yaml.py --change_task enginetype-asr_inference # change application.yaml, asr engine_type: inference; asr engine_backend: asr_pd.yaml
python change_yaml.py --change_task enginetype-tts_inference # change application.yaml, tts engine_type: inference; tts engine_backend: tts_pd.yaml
# start server: asr engine type: inference; tts engine type: inference; cls engine type: inference; device: gpu
python change_yaml.py --change_task enginetype-asr_inference # change engine_list: 'asr_python' -> 'asr_inference'
python change_yaml.py --change_task enginetype-tts_inference # change engine_list: 'tts_python' -> 'tts_inference'
python change_yaml.py --change_task enginetype-cls_inference # change engine_list: 'cls_python' -> 'cls_inference'
echo "Start the service: asr engine type: inference; tts engine type: inference; device: gpu" | tee -a ./log/test_result.log
echo "Start the service: asr engine type: inference; tts engine type: inference; cls engine type: inference; device: gpu" | tee -a ./log/test_result.log
((target_start_num+=1))
StartService
@ -150,11 +158,12 @@ sleep 2s
echo "**************************************************************************************" | tee -a ./log/test_result.log
# start server: asr engine type: inference; tts engine type: inference; device: cpu
python change_yaml.py --change_task device-asr_inference-cpu # change asr_pd.yaml device: cpu
python change_yaml.py --change_task device-tts_inference-cpu # change tts_pd.yaml device: cpu
# start server: asr engine type: inference; tts engine type: inference; cls engine type: inference; device: cpu
python change_yaml.py --change_task device-asr_inference-cpu # change asr_inference device: cpu
python change_yaml.py --change_task device-tts_inference-cpu # change tts_inference device: cpu
python change_yaml.py --change_task device-cls_inference-cpu # change cls_inference device: cpu
echo "start the service: asr engine type: inference; tts engine type: inference; device: cpu" | tee -a ./log/test_result.log
echo "start the service: asr engine type: inference; tts engine type: inference; cls engine type: inference; device: cpu" | tee -a ./log/test_result.log
((target_start_num+=1))
StartService

Loading…
Cancel
Save