Merge pull request #1302 from jerryuhoo/develop
[TTS] Add support for finetuning speedyspeechpull/1322/head
commit
8f507ba4ba
@ -0,0 +1,246 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# generate mels using durations.txt
|
||||
# for mb melgan finetune
|
||||
# 长度和原本的 mel 不一致怎么办?
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
|
||||
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
|
||||
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
||||
from paddlespeech.t2s.models.speedyspeech import SpeedySpeech
|
||||
from paddlespeech.t2s.models.speedyspeech import SpeedySpeechInference
|
||||
from paddlespeech.t2s.modules.normalizer import ZScore
|
||||
|
||||
|
||||
def evaluate(args, speedyspeech_config):
|
||||
rootdir = Path(args.rootdir).expanduser()
|
||||
assert rootdir.is_dir()
|
||||
|
||||
# construct dataset for evaluation
|
||||
with open(args.phones_dict, "r") as f:
|
||||
phn_id = [line.strip().split() for line in f.readlines()]
|
||||
vocab_size = len(phn_id)
|
||||
print("vocab_size:", vocab_size)
|
||||
|
||||
phone_dict = {}
|
||||
for phn, id in phn_id:
|
||||
phone_dict[phn] = int(id)
|
||||
|
||||
with open(args.tones_dict, "r") as f:
|
||||
tone_id = [line.strip().split() for line in f.readlines()]
|
||||
tone_size = len(tone_id)
|
||||
print("tone_size:", tone_size)
|
||||
|
||||
frontend = Frontend(
|
||||
phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict)
|
||||
|
||||
if args.speaker_dict:
|
||||
with open(args.speaker_dict, 'rt') as f:
|
||||
spk_id_list = [line.strip().split() for line in f.readlines()]
|
||||
spk_num = len(spk_id_list)
|
||||
else:
|
||||
spk_num = None
|
||||
|
||||
model = SpeedySpeech(
|
||||
vocab_size=vocab_size,
|
||||
tone_size=tone_size,
|
||||
**speedyspeech_config["model"],
|
||||
spk_num=spk_num)
|
||||
|
||||
model.set_state_dict(
|
||||
paddle.load(args.speedyspeech_checkpoint)["main_params"])
|
||||
model.eval()
|
||||
|
||||
stat = np.load(args.speedyspeech_stat)
|
||||
mu, std = stat
|
||||
mu = paddle.to_tensor(mu)
|
||||
std = paddle.to_tensor(std)
|
||||
speedyspeech_normalizer = ZScore(mu, std)
|
||||
|
||||
speedyspeech_inference = SpeedySpeechInference(speedyspeech_normalizer,
|
||||
model)
|
||||
speedyspeech_inference.eval()
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
sentences, speaker_set = get_phn_dur(args.dur_file)
|
||||
merge_silence(sentences)
|
||||
|
||||
if args.dataset == "baker":
|
||||
wav_files = sorted(list((rootdir / "Wave").rglob("*.wav")))
|
||||
# split data into 3 sections
|
||||
num_train = 9800
|
||||
num_dev = 100
|
||||
train_wav_files = wav_files[:num_train]
|
||||
dev_wav_files = wav_files[num_train:num_train + num_dev]
|
||||
test_wav_files = wav_files[num_train + num_dev:]
|
||||
elif args.dataset == "aishell3":
|
||||
sub_num_dev = 5
|
||||
wav_dir = rootdir / "train" / "wav"
|
||||
train_wav_files = []
|
||||
dev_wav_files = []
|
||||
test_wav_files = []
|
||||
for speaker in os.listdir(wav_dir):
|
||||
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
|
||||
if len(wav_files) > 100:
|
||||
train_wav_files += wav_files[:-sub_num_dev * 2]
|
||||
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
|
||||
test_wav_files += wav_files[-sub_num_dev:]
|
||||
else:
|
||||
train_wav_files += wav_files
|
||||
|
||||
train_wav_files = [
|
||||
os.path.basename(str(str_path)) for str_path in train_wav_files
|
||||
]
|
||||
dev_wav_files = [
|
||||
os.path.basename(str(str_path)) for str_path in dev_wav_files
|
||||
]
|
||||
test_wav_files = [
|
||||
os.path.basename(str(str_path)) for str_path in test_wav_files
|
||||
]
|
||||
|
||||
for i, utt_id in enumerate(tqdm(sentences)):
|
||||
phones = sentences[utt_id][0]
|
||||
durations = sentences[utt_id][1]
|
||||
speaker = sentences[utt_id][2]
|
||||
# 裁剪掉开头和结尾的 sil
|
||||
if args.cut_sil:
|
||||
if phones[0] == "sil" and len(durations) > 1:
|
||||
durations = durations[1:]
|
||||
phones = phones[1:]
|
||||
if phones[-1] == 'sil' and len(durations) > 1:
|
||||
durations = durations[:-1]
|
||||
phones = phones[:-1]
|
||||
|
||||
phones, tones = frontend._get_phone_tone(phones, get_tone_ids=True)
|
||||
if tones:
|
||||
tone_ids = frontend._t2id(tones)
|
||||
tone_ids = paddle.to_tensor(tone_ids)
|
||||
if phones:
|
||||
phone_ids = frontend._p2id(phones)
|
||||
phone_ids = paddle.to_tensor(phone_ids)
|
||||
|
||||
if args.speaker_dict:
|
||||
speaker_id = int(
|
||||
[item[1] for item in spk_id_list if speaker == item[0]][0])
|
||||
speaker_id = paddle.to_tensor(speaker_id)
|
||||
else:
|
||||
speaker_id = None
|
||||
|
||||
durations = paddle.to_tensor(np.array(durations))
|
||||
durations = paddle.unsqueeze(durations, axis=0)
|
||||
|
||||
# 生成的和真实的可能有 1, 2 帧的差距,但是 batch_fn 会修复
|
||||
# split data into 3 sections
|
||||
|
||||
wav_path = utt_id + ".wav"
|
||||
|
||||
if wav_path in train_wav_files:
|
||||
sub_output_dir = output_dir / ("train/raw")
|
||||
elif wav_path in dev_wav_files:
|
||||
sub_output_dir = output_dir / ("dev/raw")
|
||||
elif wav_path in test_wav_files:
|
||||
sub_output_dir = output_dir / ("test/raw")
|
||||
|
||||
sub_output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with paddle.no_grad():
|
||||
mel = speedyspeech_inference(
|
||||
phone_ids, tone_ids, durations=durations, spk_id=speaker_id)
|
||||
np.save(sub_output_dir / (utt_id + "_feats.npy"), mel)
|
||||
|
||||
|
||||
def main():
|
||||
# parse args and config and redirect to train_sp
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Synthesize with speedyspeech & parallel wavegan.")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default="baker",
|
||||
type=str,
|
||||
help="name of dataset, should in {baker, ljspeech, vctk} now")
|
||||
parser.add_argument(
|
||||
"--rootdir", default=None, type=str, help="directory to dataset.")
|
||||
parser.add_argument(
|
||||
"--speedyspeech-config", type=str, help="speedyspeech config file.")
|
||||
parser.add_argument(
|
||||
"--speedyspeech-checkpoint",
|
||||
type=str,
|
||||
help="speedyspeech checkpoint to load.")
|
||||
parser.add_argument(
|
||||
"--speedyspeech-stat",
|
||||
type=str,
|
||||
help="mean and standard deviation used to normalize spectrogram when training speedyspeech."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--phones-dict",
|
||||
type=str,
|
||||
default="phone_id_map.txt",
|
||||
help="phone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--tones-dict",
|
||||
type=str,
|
||||
default="tone_id_map.txt",
|
||||
help="tone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--speaker-dict", type=str, default=None, help="speaker id map file.")
|
||||
|
||||
parser.add_argument(
|
||||
"--dur-file", default=None, type=str, help="path to durations.txt.")
|
||||
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||||
parser.add_argument(
|
||||
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
||||
|
||||
def str2bool(str):
|
||||
return True if str.lower() == 'true' else False
|
||||
|
||||
parser.add_argument(
|
||||
"--cut-sil",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="whether cut sil in the edge of audio")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.ngpu == 0:
|
||||
paddle.set_device("cpu")
|
||||
elif args.ngpu > 0:
|
||||
paddle.set_device("gpu")
|
||||
else:
|
||||
print("ngpu should >= 0 !")
|
||||
|
||||
with open(args.speedyspeech_config) as f:
|
||||
speedyspeech_config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
print("========Args========")
|
||||
print(yaml.safe_dump(vars(args)))
|
||||
print("========Config========")
|
||||
print(speedyspeech_config)
|
||||
|
||||
evaluate(args, speedyspeech_config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue