add vits trainer and synthesize

pull/1855/head
TianYuan 3 years ago
parent 4b7786f2ed
commit 8db06444c5

@ -86,8 +86,8 @@ updater:
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #

@ -0,0 +1,183 @@
# This configuration tested on 4 GPUs (V100) with 32GB GPU
# memory. It takes around 2 weeks to finish the training
# but 100k iters model should generate reasonable results.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 22050 # sr
n_fft: 1024 # FFT size (samples).
n_shift: 256 # Hop size (samples). 12.5ms
win_length: null # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
##########################################################
# TTS MODEL SETTING #
##########################################################
model:
# generator related
generator_type: vits_generator
generator_params:
hidden_channels: 192
spks: -1
global_channels: -1
segment_size: 32
text_encoder_attention_heads: 2
text_encoder_ffn_expand: 4
text_encoder_blocks: 6
text_encoder_positionwise_layer_type: "conv1d"
text_encoder_positionwise_conv_kernel_size: 3
text_encoder_positional_encoding_layer_type: "rel_pos"
text_encoder_self_attention_layer_type: "rel_selfattn"
text_encoder_activation_type: "swish"
text_encoder_normalize_before: True
text_encoder_dropout_rate: 0.1
text_encoder_positional_dropout_rate: 0.0
text_encoder_attention_dropout_rate: 0.1
use_macaron_style_in_text_encoder: True
use_conformer_conv_in_text_encoder: False
text_encoder_conformer_kernel_size: -1
decoder_kernel_size: 7
decoder_channels: 512
decoder_upsample_scales: [8, 8, 2, 2]
decoder_upsample_kernel_sizes: [16, 16, 4, 4]
decoder_resblock_kernel_sizes: [3, 7, 11]
decoder_resblock_dilations: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
use_weight_norm_in_decoder: True
posterior_encoder_kernel_size: 5
posterior_encoder_layers: 16
posterior_encoder_stacks: 1
posterior_encoder_base_dilation: 1
posterior_encoder_dropout_rate: 0.0
use_weight_norm_in_posterior_encoder: True
flow_flows: 4
flow_kernel_size: 5
flow_base_dilation: 1
flow_layers: 4
flow_dropout_rate: 0.0
use_weight_norm_in_flow: True
use_only_mean_in_flow: True
stochastic_duration_predictor_kernel_size: 3
stochastic_duration_predictor_dropout_rate: 0.5
stochastic_duration_predictor_flows: 4
stochastic_duration_predictor_dds_conv_layers: 3
# discriminator related
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: "AvgPool1D"
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [15, 41, 5, 3]
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: True
downsample_scales: [2, 2, 4, 4, 1]
nonlinear_activation: "leakyrelu"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
follow_official_norm: False
periods: [2, 3, 5, 7, 11]
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [5, 3]
channels: 32
downsample_scales: [3, 3, 3, 3, 1]
max_downsample_channels: 1024
bias: True
nonlinear_activation: "leakyrelu"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
# others
sampling_rate: 22050 # needed in the inference for saving wav
cache_generator_outputs: True # whether to cache generator outputs in the training
###########################################################
# LOSS SETTING #
###########################################################
# loss function related
generator_adv_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
discriminator_adv_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
feat_match_loss_params:
average_by_discriminators: False # whether to average loss value by #discriminators
average_by_layers: False # whether to average loss value by #layers of each discriminator
include_final_outputs: True # whether to include final outputs for loss calculation
mel_loss_params:
fs: 22050 # must be the same as the training data
fft_size: 1024 # fft points
hop_size: 256 # hop size
win_length: null # window length
window: hann # window type
num_mels: 80 # number of Mel basis
fmin: 0 # minimum frequency for Mel basis
fmax: null # maximum frequency for Mel basis
log_base: null # null represent natural log
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_adv: 1.0 # loss scaling coefficient for adversarial loss
lambda_mel: 45.0 # loss scaling coefficient for Mel loss
lambda_feat_match: 2.0 # loss scaling coefficient for feat match loss
lambda_dur: 1.0 # loss scaling coefficient for duration loss
lambda_kl: 1.0 # loss scaling coefficient for KL divergence loss
# others
sampling_rate: 22050 # needed in the inference for saving wav
cache_generator_outputs: True # whether to cache generator outputs in the training
###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 64 # Batch size.
num_workers: 4 # Number of workers in DataLoader.
##########################################################
# OPTIMIZER & SCHEDULER SETTING #
##########################################################
# optimizer setting for generator
generator_optimizer_params:
beta1: 0.8
beta2: 0.99
epsilon: 1.0e-9
weight_decay: 0.0
generator_scheduler: exponential_decay
generator_scheduler_params:
learning_rate: 2.0e-4
gamma: 0.999875
# optimizer setting for discriminator
discriminator_optimizer_params:
beta1: 0.8
beta2: 0.99
epsilon: 1.0e-9
weight_decay: 0.0
discriminator_scheduler: exponential_decay
discriminator_scheduler_params:
learning_rate: 2.0e-4
gamma: 0.999875
generator_first: False # whether to start updating generator first
##########################################################
# OTHER TRAINING SETTING #
##########################################################
max_epoch: 1000 # number of epochs
num_snapshots: 10 # max number of snapshots to keep while training
seed: 777 # random seed number

@ -0,0 +1,64 @@
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./baker_alignment_tone \
--output=durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=baker \
--rootdir=~/datasets/BZNSYP/ \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="feats"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--skip-wav-copy
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--skip-wav-copy
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--feats-stats=dump/train/feats_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt \
--skip-wav-copy
fi

@ -0,0 +1,18 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize.py \
--config=${config_path} \
--ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--phones_dict=dump/phone_id_map.txt \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test
fi

@ -0,0 +1,18 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--config=${config_path} \
--ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--phones_dict=dump/phone_id_map.txt \
--output_dir=${train_output_path}/test_e2e \
--text=${BIN_DIR}/../sentences.txt
fi

@ -0,0 +1,12 @@
#!/bin/bash
config_path=$1
train_output_path=$2
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=4 \
--phones-dict=dump/phone_id_map.txt

@ -0,0 +1,36 @@
#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -130,7 +130,7 @@ HiFiGAN checkpoint contains files listed below.
```text
hifigan_csmsc_ckpt_0.1.1
├── default.yaml # default config used to train hifigan
├── feats_stats.npy # statistics used to normalize spectrogram when training hifigan
├── feats_stats.npy # statistics used to normalize spectrogram when training hifigan
└── snapshot_iter_2500000.pdz # generator parameters of hifigan
```

@ -293,3 +293,45 @@ def transformer_single_spk_batch_fn(examples):
"speech_lengths": speech_lengths,
}
return batch
def vits_single_spk_batch_fn(examples):
"""
Returns:
Dict[str, Any]:
- text (Tensor): Text index tensor (B, T_text).
- text_lengths (Tensor): Text length tensor (B,).
- feats (Tensor): Feature tensor (B, T_feats, aux_channels).
- feats_lengths (Tensor): Feature length tensor (B,).
- speech (Tensor): Speech waveform tensor (B, T_wav).
"""
# fields = ["text", "text_lengths", "feats", "feats_lengths", "speech"]
text = [np.array(item["text"], dtype=np.int64) for item in examples]
feats = [np.array(item["feats"], dtype=np.float32) for item in examples]
speech = [np.array(item["wave"], dtype=np.float32) for item in examples]
text_lengths = [
np.array(item["text_lengths"], dtype=np.int64) for item in examples
]
feats_lengths = [
np.array(item["feats_lengths"], dtype=np.int64) for item in examples
]
text = batch_sequences(text)
feats = batch_sequences(feats)
speech = batch_sequences(speech)
# convert each batch to paddle.Tensor
text = paddle.to_tensor(text)
feats = paddle.to_tensor(feats)
text_lengths = paddle.to_tensor(text_lengths)
feats_lengths = paddle.to_tensor(feats_lengths)
batch = {
"text": text,
"text_lengths": text_lengths,
"feats": feats,
"feats_lengths": feats_lengths,
"speech": speech
}
return batch

@ -167,7 +167,6 @@ def batch_spec(minibatch, pad_value=0., time_major=False, dtype=np.float32):
def batch_sequences(sequences, axis=0, pad_value=0):
# import pdb; pdb.set_trace()
seq = sequences[0]
ndim = seq.ndim
if axis < 0:

@ -171,7 +171,6 @@ class Pitch():
class Energy():
def __init__(self,
sr: int=24000,
n_fft: int=2048,
hop_length: int=300,
win_length: int=None,
@ -179,7 +178,6 @@ class Energy():
center: bool=True,
pad_mode: str="reflect"):
self.sr = sr
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length

@ -144,10 +144,17 @@ def process_sentences(config,
spk_emb_dir: Path=None):
if nprocs == 1:
results = []
for fp in fps:
record = process_sentence(config, fp, sentences, output_dir,
mel_extractor, pitch_extractor,
energy_extractor, cut_sil, spk_emb_dir)
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir)
if record:
results.append(record)
else:
@ -322,7 +329,6 @@ def main():
f0min=config.f0min,
f0max=config.f0max)
energy_extractor = Energy(
sr=config.fs,
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
@ -331,36 +337,36 @@ def main():
# process for the 3 sections
if train_wav_files:
process_sentences(
config,
train_wav_files,
sentences,
train_dump_dir,
mel_extractor,
pitch_extractor,
energy_extractor,
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if dev_wav_files:
process_sentences(
config,
dev_wav_files,
sentences,
dev_dump_dir,
mel_extractor,
pitch_extractor,
energy_extractor,
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if test_wav_files:
process_sentences(
config,
test_wav_files,
sentences,
test_dump_dir,
mel_extractor,
pitch_extractor,
energy_extractor,
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)

@ -85,15 +85,17 @@ def process_sentence(config: Dict[str, Any],
y, (0, num_frames * config.n_shift - y.size), mode="reflect")
else:
y = y[:num_frames * config.n_shift]
num_sample = y.shape[0]
num_samples = y.shape[0]
mel_path = output_dir / (utt_id + "_feats.npy")
wav_path = output_dir / (utt_id + "_wave.npy")
np.save(wav_path, y) # (num_samples, )
np.save(mel_path, logmel) # (num_frames, n_mels)
# (num_samples, )
np.save(wav_path, y)
# (num_frames, n_mels)
np.save(mel_path, logmel)
record = {
"utt_id": utt_id,
"num_samples": num_sample,
"num_samples": num_samples,
"num_frames": num_frames,
"feats": str(mel_path),
"wave": str(wav_path),
@ -108,11 +110,17 @@ def process_sentences(config,
mel_extractor=None,
nprocs: int=1,
cut_sil: bool=True):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(config, fp, sentences, output_dir,
mel_extractor, cut_sil)
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
mel_extractor=mel_extractor,
cut_sil=cut_sil)
if record:
results.append(record)
else:
@ -147,7 +155,7 @@ def main():
"--dataset",
default="baker",
type=str,
help="name of dataset, should in {baker, ljspeech, vctk} now")
help="name of dataset, should in {baker, aishell3, ljspeech, vctk} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
@ -261,28 +269,28 @@ def main():
# process for the 3 sections
if train_wav_files:
process_sentences(
config,
train_wav_files,
sentences,
train_dump_dir,
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil)
if dev_wav_files:
process_sentences(
config,
dev_wav_files,
sentences,
dev_dump_dir,
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil)
if test_wav_files:
process_sentences(
config,
test_wav_files,
sentences,
test_dump_dir,
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil)

@ -123,11 +123,17 @@ def process_sentences(config,
nprocs: int=1,
cut_sil: bool=True,
use_relative_path: bool=False):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(config, fp, sentences, output_dir,
mel_extractor, cut_sil)
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
mel_extractor=mel_extractor,
cut_sil=cut_sil)
if record:
results.append(record)
else:
@ -265,30 +271,30 @@ def main():
# process for the 3 sections
if train_wav_files:
process_sentences(
config,
train_wav_files,
sentences,
train_dump_dir,
mel_extractor,
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
use_relative_path=args.use_relative_path)
if dev_wav_files:
process_sentences(
config,
dev_wav_files,
sentences,
dev_dump_dir,
mel_extractor,
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
cut_sil=args.cut_sil,
use_relative_path=args.use_relative_path)
if test_wav_files:
process_sentences(
config,
test_wav_files,
sentences,
test_dump_dir,
mel_extractor,
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
use_relative_path=args.use_relative_path)

@ -27,11 +27,11 @@ from paddle import jit
from paddle.static import InputSpec
from yacs.config import CfgNode
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.frontend import English
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.modules.normalizer import ZScore
from paddlespeech.utils.dynamic_import import dynamic_import
model_alias = {
# acoustic model

@ -107,8 +107,8 @@ def evaluate(args):
if args.voice_cloning and "spk_emb" in datum:
spk_emb = paddle.to_tensor(np.load(datum["spk_emb"]))
mel = am_inference(phone_ids, spk_emb=spk_emb)
# vocoder
wav = voc_inference(mel)
# vocoder
wav = voc_inference(mel)
wav = wav.numpy()
N += wav.size
@ -125,7 +125,7 @@ def evaluate(args):
def parse_args():
# parse args and config and redirect to train_sp
# parse args and config
parser = argparse.ArgumentParser(
description="Synthesize with acoustic model & vocoder")
# acoustic model
@ -143,7 +143,7 @@ def parse_args():
'--am_config',
type=str,
default=None,
help='Config of acoustic model. Use deault config when it is None.')
help='Config of acoustic model.')
parser.add_argument(
'--am_ckpt',
type=str,
@ -182,7 +182,7 @@ def parse_args():
'--voc_config',
type=str,
default=None,
help='Config of voc. Use deault config when it is None.')
help='Config of voc.')
parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument(

@ -159,7 +159,7 @@ def evaluate(args):
def parse_args():
# parse args and config and redirect to train_sp
# parse args and config
parser = argparse.ArgumentParser(
description="Synthesize with acoustic model & vocoder")
# acoustic model
@ -177,7 +177,7 @@ def parse_args():
'--am_config',
type=str,
default=None,
help='Config of acoustic model. Use deault config when it is None.')
help='Config of acoustic model.')
parser.add_argument(
'--am_ckpt',
type=str,
@ -223,7 +223,7 @@ def parse_args():
'--voc_config',
type=str,
default=None,
help='Config of voc. Use deault config when it is None.')
help='Config of voc.')
parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument(

@ -201,7 +201,7 @@ def evaluate(args):
def parse_args():
# parse args and config and redirect to train_sp
# parse args and config
parser = argparse.ArgumentParser(
description="Synthesize with acoustic model & vocoder")
# acoustic model
@ -215,7 +215,7 @@ def parse_args():
'--am_config',
type=str,
default=None,
help='Config of acoustic model. Use deault config when it is None.')
help='Config of acoustic model.')
parser.add_argument(
'--am_ckpt',
type=str,
@ -248,7 +248,7 @@ def parse_args():
'--voc_config',
type=str,
default=None,
help='Config of voc. Use deault config when it is None.')
help='Config of voc.')
parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument(

@ -122,9 +122,15 @@ def process_sentences(config,
spk_emb_dir: Path=None):
if nprocs == 1:
results = []
for fp in fps:
record = process_sentence(config, fp, sentences, output_dir,
mel_extractor, cut_sil, spk_emb_dir)
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
mel_extractor=mel_extractor,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir)
if record:
results.append(record)
else:
@ -296,30 +302,30 @@ def main():
# process for the 3 sections
if train_wav_files:
process_sentences(
config,
train_wav_files,
sentences,
train_dump_dir,
mel_extractor,
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if dev_wav_files:
process_sentences(
config,
dev_wav_files,
sentences,
dev_dump_dir,
mel_extractor,
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if test_wav_files:
process_sentences(
config,
test_wav_files,
sentences,
test_dump_dir,
mel_extractor,
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)

@ -125,11 +125,16 @@ def process_sentences(config,
output_dir: Path,
mel_extractor=None,
nprocs: int=1):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(config, fp, sentences, output_dir,
mel_extractor)
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
mel_extractor=mel_extractor)
if record:
results.append(record)
else:
@ -247,27 +252,27 @@ def main():
# process for the 3 sections
if train_wav_files:
process_sentences(
config,
train_wav_files,
sentences,
train_dump_dir,
mel_extractor,
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu)
if dev_wav_files:
process_sentences(
config,
dev_wav_files,
sentences,
dev_dump_dir,
mel_extractor,
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu)
if test_wav_files:
process_sentences(
config,
test_wav_files,
sentences,
test_dump_dir,
mel_extractor,
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu)

@ -1,4 +1,4 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -11,3 +11,155 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalize feature files and dump them."""
import argparse
import logging
from operator import itemgetter
from pathlib import Path
import jsonlines
import numpy as np
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from paddlespeech.t2s.datasets.data_table import DataTable
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
)
parser.add_argument(
"--metadata",
type=str,
required=True,
help="directory including feature files to be normalized. "
"you need to specify either *-scp or rootdir.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump normalized feature files.")
parser.add_argument(
"--feats-stats",
type=str,
required=True,
help="speech statistics file.")
parser.add_argument(
"--skip-wav-copy",
default=False,
action="store_true",
help="whether to skip the copy of wav files.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--speaker-dict", type=str, default=None, help="speaker id map file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
logging.warning('Skip DEBUG/INFO messages')
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
# get dataset
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata,
converters={
"feats": np.load,
"wave": None if args.skip_wav_copy else np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
# restore scaler
feats_scaler = StandardScaler()
feats_scaler.mean_ = np.load(args.feats_stats)[0]
feats_scaler.scale_ = np.load(args.feats_stats)[1]
feats_scaler.n_features_in_ = feats_scaler.mean_.shape[0]
vocab_phones = {}
with open(args.phones_dict, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
vocab_phones[phn] = int(id)
vocab_speaker = {}
with open(args.speaker_dict, 'rt') as f:
spk_id = [line.strip().split() for line in f.readlines()]
for spk, id in spk_id:
vocab_speaker[spk] = int(id)
# process each file
output_metadata = []
for item in tqdm(dataset):
utt_id = item['utt_id']
feats = item['feats']
wave = item['wave']
# normalize
feats = feats_scaler.transform(feats)
feats_path = dumpdir / f"{utt_id}_feats.npy"
np.save(feats_path, feats.astype(np.float32), allow_pickle=False)
if not args.skip_wav_copy:
wav_path = dumpdir / f"{utt_id}_wave.npy"
np.save(wav_path, wave.astype(np.float32), allow_pickle=False)
else:
wav_path = wave
phone_ids = [vocab_phones[p] for p in item['phones']]
spk_id = vocab_speaker[item["speaker"]]
record = {
"utt_id": item['utt_id'],
"text": phone_ids,
"text_lengths": item['text_lengths'],
'feats': str(feats_path),
"feats_lengths": item['feats_lengths'],
"wave": str(wav_path),
"spk_id": spk_id,
}
# add spk_emb for voice cloning
if "spk_emb" in item:
record["spk_emb"] = str(item["spk_emb"])
output_metadata.append(record)
output_metadata.sort(key=itemgetter('utt_id'))
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
with jsonlines.open(output_metadata_path, 'w') as writer:
for item in output_metadata:
writer.write(item)
logging.info(f"metadata dumped into {output_metadata_path}")
if __name__ == "__main__":
main()

@ -11,3 +11,338 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from concurrent.futures import ThreadPoolExecutor
from operator import itemgetter
from pathlib import Path
from typing import Any
from typing import Dict
from typing import List
import jsonlines
import librosa
import numpy as np
import tqdm
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.get_feats import LinearSpectrogram
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import get_spk_id_map
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
from paddlespeech.t2s.utils import str2bool
def process_sentence(config: Dict[str, Any],
fp: Path,
sentences: Dict,
output_dir: Path,
spec_extractor=None,
cut_sil: bool=True,
spk_emb_dir: Path=None):
utt_id = fp.stem
# for vctk
if utt_id.endswith("_mic2"):
utt_id = utt_id[:-5]
record = None
if utt_id in sentences:
# reading, resampling may occur
wav, _ = librosa.load(str(fp), sr=config.fs)
if len(wav.shape) != 1:
return record
max_value = np.abs(wav).max()
if max_value > 1.0:
wav = wav / max_value
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
assert np.abs(wav).max(
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
speaker = sentences[utt_id][2]
d_cumsum = np.pad(np.array(durations).cumsum(0), (1, 0), 'constant')
# little imprecise than use *.TextGrid directly
times = librosa.frames_to_time(
d_cumsum, sr=config.fs, hop_length=config.n_shift)
if cut_sil:
start = 0
end = d_cumsum[-1]
if phones[0] == "sil" and len(durations) > 1:
start = times[1]
durations = durations[1:]
phones = phones[1:]
if phones[-1] == 'sil' and len(durations) > 1:
end = times[-2]
durations = durations[:-1]
phones = phones[:-1]
sentences[utt_id][0] = phones
sentences[utt_id][1] = durations
start, end = librosa.time_to_samples([start, end], sr=config.fs)
wav = wav[start:end]
# extract mel feats
spec = spec_extractor.get_linear_spectrogram(wav)
# change duration according to mel_length
compare_duration_and_mel_length(sentences, utt_id, spec)
# utt_id may be popped in compare_duration_and_mel_length
if utt_id not in sentences:
return None
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
num_frames = spec.shape[0]
assert sum(durations) == num_frames
if wav.size < num_frames * config.n_shift:
wav = np.pad(
wav, (0, num_frames * config.n_shift - wav.size),
mode="reflect")
else:
wav = wav[:num_frames * config.n_shift]
num_samples = wav.shape[0]
spec_path = output_dir / (utt_id + "_feats.npy")
wav_path = output_dir / (utt_id + "_wave.npy")
# (num_samples, )
np.save(wav_path, wav)
# (num_frames, aux_channels)
np.save(spec_path, spec)
record = {
"utt_id": utt_id,
"phones": phones,
"text_lengths": len(phones),
"feats": str(spec_path),
"feats_lengths": num_frames,
"wave": str(wav_path),
"speaker": speaker
}
if spk_emb_dir:
if speaker in os.listdir(spk_emb_dir):
embed_name = utt_id + ".npy"
embed_path = spk_emb_dir / speaker / embed_name
if embed_path.is_file():
record["spk_emb"] = str(embed_path)
else:
return None
return record
def process_sentences(config,
fps: List[Path],
sentences: Dict,
output_dir: Path,
spec_extractor=None,
nprocs: int=1,
cut_sil: bool=True,
spk_emb_dir: Path=None):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
spec_extractor=spec_extractor,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir)
if record:
results.append(record)
else:
with ThreadPoolExecutor(nprocs) as pool:
futures = []
with tqdm.tqdm(total=len(fps)) as progress:
for fp in fps:
future = pool.submit(process_sentence, config, fp,
sentences, output_dir, spec_extractor,
cut_sil, spk_emb_dir)
future.add_done_callback(lambda p: progress.update())
futures.append(future)
results = []
for ft in futures:
record = ft.result()
if record:
results.append(record)
results.sort(key=itemgetter("utt_id"))
with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer:
for item in results:
writer.write(item)
print("Done")
def main():
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features.")
parser.add_argument(
"--dataset",
default="baker",
type=str,
help="name of dataset, should in {baker, aishell3, ljspeech, vctk} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump feature files.")
parser.add_argument(
"--dur-file", default=None, type=str, help="path to durations.txt.")
parser.add_argument("--config", type=str, help="fastspeech2 config file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
parser.add_argument(
"--num-cpu", type=int, default=1, help="number of process.")
parser.add_argument(
"--cut-sil",
type=str2bool,
default=True,
help="whether cut sil in the edge of audio")
parser.add_argument(
"--spk_emb_dir",
default=None,
type=str,
help="directory to speaker embedding files.")
args = parser.parse_args()
rootdir = Path(args.rootdir).expanduser()
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
dur_file = Path(args.dur_file).expanduser()
if args.spk_emb_dir:
spk_emb_dir = Path(args.spk_emb_dir).expanduser().resolve()
else:
spk_emb_dir = None
assert rootdir.is_dir()
assert dur_file.is_file()
with open(args.config, 'rt') as f:
config = CfgNode(yaml.safe_load(f))
if args.verbose > 1:
print(vars(args))
print(config)
sentences, speaker_set = get_phn_dur(dur_file)
merge_silence(sentences)
phone_id_map_path = dumpdir / "phone_id_map.txt"
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
get_input_token(sentences, phone_id_map_path, args.dataset)
get_spk_id_map(speaker_set, speaker_id_map_path)
if args.dataset == "baker":
wav_files = sorted(list((rootdir / "Wave").rglob("*.wav")))
# split data into 3 sections
num_train = 9800
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
elif args.dataset == "aishell3":
sub_num_dev = 5
wav_dir = rootdir / "train" / "wav"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
elif args.dataset == "ljspeech":
wav_files = sorted(list((rootdir / "wavs").rglob("*.wav")))
# split data into 3 sections
num_train = 12900
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
elif args.dataset == "vctk":
sub_num_dev = 5
wav_dir = rootdir / "wav48_silence_trimmed"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*_mic2.flac")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
else:
print("dataset should in {baker, aishell3, ljspeech, vctk} now!")
train_dump_dir = dumpdir / "train" / "raw"
train_dump_dir.mkdir(parents=True, exist_ok=True)
dev_dump_dir = dumpdir / "dev" / "raw"
dev_dump_dir.mkdir(parents=True, exist_ok=True)
test_dump_dir = dumpdir / "test" / "raw"
test_dump_dir.mkdir(parents=True, exist_ok=True)
# Extractor
spec_extractor = LinearSpectrogram(
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window)
# process for the 3 sections
if train_wav_files:
process_sentences(
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
spec_extractor=spec_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if dev_wav_files:
process_sentences(
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
spec_extractor=spec_extractor,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if test_wav_files:
process_sentences(
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
spec_extractor=spec_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if __name__ == "__main__":
main()

@ -11,3 +11,107 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import jsonlines
import paddle
import soundfile as sf
import yaml
from timer import timer
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.vits import VITS
def evaluate(args):
# construct dataset for evaluation
with jsonlines.open(args.test_metadata, 'r') as reader:
test_metadata = list(reader)
# Init body.
with open(args.config) as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
fields = ["utt_id", "text"]
test_dataset = DataTable(data=test_metadata, fields=fields)
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = config.n_fft // 2 + 1
vits = VITS(idim=vocab_size, odim=odim, **config["model"])
vits.set_state_dict(paddle.load(args.ckpt)["main_params"])
vits.eval()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
N = 0
T = 0
for datum in test_dataset:
utt_id = datum["utt_id"]
phone_ids = paddle.to_tensor(datum["text"])
with timer() as t:
with paddle.no_grad():
out = vits.inference(text=phone_ids)
wav = out["wav"]
wav = wav.numpy()
N += wav.size
T += t.elapse
speed = wav.size / t.elapse
rtf = config.fs / speed
print(
f"{utt_id}, wave: {wav.size}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
)
sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=config.fs)
print(f"{utt_id} done!")
print(f"generation speed: {N / T}Hz, RTF: {config.fs / (N / T) }")
def parse_args():
# parse args and config
parser = argparse.ArgumentParser(description="Synthesize with VITS")
# model
parser.add_argument(
'--config', type=str, default=None, help='Config of VITS.')
parser.add_argument(
'--ckpt', type=str, default=None, help='Checkpoint file of VITS.')
parser.add_argument(
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
# other
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
parser.add_argument("--test_metadata", type=str, help="test metadata.")
parser.add_argument("--output_dir", type=str, help="output dir.")
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
evaluate(args)
if __name__ == "__main__":
main()

@ -0,0 +1,146 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import paddle
import soundfile as sf
import yaml
from timer import timer
from yacs.config import CfgNode
from paddlespeech.t2s.exps.syn_utils import get_frontend
from paddlespeech.t2s.exps.syn_utils import get_sentences
from paddlespeech.t2s.models.vits import VITS
def evaluate(args):
# Init body.
with open(args.config) as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
sentences = get_sentences(text_file=args.text, lang=args.lang)
# frontend
frontend = get_frontend(lang=args.lang, phones_dict=args.phones_dict)
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = config.n_fft // 2 + 1
vits = VITS(idim=vocab_size, odim=odim, **config["model"])
vits.set_state_dict(paddle.load(args.ckpt)["main_params"])
vits.eval()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
merge_sentences = False
N = 0
T = 0
for utt_id, sentence in sentences:
with timer() as t:
if args.lang == 'zh':
input_ids = frontend.get_input_ids(
sentence, merge_sentences=merge_sentences)
phone_ids = input_ids["phone_ids"]
elif args.lang == 'en':
input_ids = frontend.get_input_ids(
sentence, merge_sentences=merge_sentences)
phone_ids = input_ids["phone_ids"]
else:
print("lang should in {'zh', 'en'}!")
with paddle.no_grad():
flags = 0
for i in range(len(phone_ids)):
part_phone_ids = phone_ids[i]
out = vits.inference(text=part_phone_ids)
wav = out["wav"]
if flags == 0:
wav_all = wav
flags = 1
else:
wav_all = paddle.concat([wav_all, wav])
wav = wav_all.numpy()
N += wav.size
T += t.elapse
speed = wav.size / t.elapse
rtf = config.fs / speed
print(
f"{utt_id}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
)
sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=config.fs)
print(f"{utt_id} done!")
print(f"generation speed: {N / T}Hz, RTF: {config.fs / (N / T) }")
def parse_args():
# parse args and config
parser = argparse.ArgumentParser(description="Synthesize with VITS")
# model
parser.add_argument(
'--config', type=str, default=None, help='Config of VITS.')
parser.add_argument(
'--ckpt', type=str, default=None, help='Checkpoint file of VITS.')
parser.add_argument(
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
# other
parser.add_argument(
'--lang',
type=str,
default='zh',
help='Choose model language. zh or en')
parser.add_argument(
"--inference_dir",
type=str,
default=None,
help="dir to save inference models")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
parser.add_argument(
"--text",
type=str,
help="text to synthesize, a 'utt_id sentence' pair per line.")
parser.add_argument("--output_dir", type=str, help="output dir.")
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
evaluate(args)
if __name__ == "__main__":
main()

@ -11,3 +11,251 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import shutil
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import yaml
from paddle import DataParallel
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddle.optimizer import Adam
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import vits_single_spk_batch_fn
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.vits import VITS
from paddlespeech.t2s.models.vits import VITSEvaluator
from paddlespeech.t2s.models.vits import VITSUpdater
from paddlespeech.t2s.modules.losses import DiscriminatorAdversarialLoss
from paddlespeech.t2s.modules.losses import FeatureMatchLoss
from paddlespeech.t2s.modules.losses import GeneratorAdversarialLoss
from paddlespeech.t2s.modules.losses import KLDivergenceLoss
from paddlespeech.t2s.modules.losses import MelSpectrogramLoss
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.optimizer import scheduler_classes
from paddlespeech.t2s.training.seeding import seed_everything
from paddlespeech.t2s.training.trainer import Trainer
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
world_size = paddle.distributed.get_world_size()
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
paddle.set_device("cpu")
else:
paddle.set_device("gpu")
if world_size > 1:
paddle.distributed.init_parallel_env()
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
)
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
fields = ["text", "text_lengths", "feats", "feats_lengths", "wave"]
converters = {
"wave": np.load,
"feats": np.load,
}
# construct dataset for training and validation
with jsonlines.open(args.train_metadata, 'r') as reader:
train_metadata = list(reader)
train_dataset = DataTable(
data=train_metadata,
fields=fields,
converters=converters, )
with jsonlines.open(args.dev_metadata, 'r') as reader:
dev_metadata = list(reader)
dev_dataset = DataTable(
data=dev_metadata,
fields=fields,
converters=converters, )
# collate function and dataloader
train_sampler = DistributedBatchSampler(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True)
dev_sampler = DistributedBatchSampler(
dev_dataset,
batch_size=config.batch_size,
shuffle=False,
drop_last=False)
print("samplers done!")
train_batch_fn = vits_single_spk_batch_fn
train_dataloader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
collate_fn=train_batch_fn,
num_workers=config.num_workers)
dev_dataloader = DataLoader(
dev_dataset,
batch_sampler=dev_sampler,
collate_fn=train_batch_fn,
num_workers=config.num_workers)
print("dataloaders done!")
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = config.n_fft // 2 + 1
model = VITS(idim=vocab_size, odim=odim, **config["model"])
gen_parameters = model.generator.parameters()
dis_parameters = model.discriminator.parameters()
if world_size > 1:
model = DataParallel(model)
gen_parameters = model._layers.generator.parameters()
dis_parameters = model._layers.discriminator.parameters()
print("model done!")
# loss
criterion_mel = MelSpectrogramLoss(
**config["mel_loss_params"], )
criterion_feat_match = FeatureMatchLoss(
**config["feat_match_loss_params"], )
criterion_gen_adv = GeneratorAdversarialLoss(
**config["generator_adv_loss_params"], )
criterion_dis_adv = DiscriminatorAdversarialLoss(
**config["discriminator_adv_loss_params"], )
criterion_kl = KLDivergenceLoss()
print("criterions done!")
lr_schedule_g = scheduler_classes[config["generator_scheduler"]](
**config["generator_scheduler_params"])
optimizer_g = Adam(
learning_rate=lr_schedule_g,
parameters=gen_parameters,
**config["generator_optimizer_params"])
lr_schedule_d = scheduler_classes[config["discriminator_scheduler"]](
**config["discriminator_scheduler_params"])
optimizer_d = Adam(
learning_rate=lr_schedule_d,
parameters=dis_parameters,
**config["discriminator_optimizer_params"])
print("optimizers done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if dist.get_rank() == 0:
config_name = args.config.split("/")[-1]
# copy conf to output_dir
shutil.copyfile(args.config, output_dir / config_name)
updater = VITSUpdater(
model=model,
optimizers={
"generator": optimizer_g,
"discriminator": optimizer_d,
},
criterions={
"mel": criterion_mel,
"feat_match": criterion_feat_match,
"gen_adv": criterion_gen_adv,
"dis_adv": criterion_dis_adv,
"kl": criterion_kl,
},
schedulers={
"generator": lr_schedule_g,
"discriminator": lr_schedule_d,
},
dataloader=train_dataloader,
lambda_adv=config.lambda_adv,
lambda_mel=config.lambda_mel,
lambda_kl=config.lambda_kl,
lambda_feat_match=config.lambda_feat_match,
lambda_dur=config.lambda_dur,
generator_first=config.generator_first,
output_dir=output_dir)
evaluator = VITSEvaluator(
model=model,
criterions={
"mel": criterion_mel,
"feat_match": criterion_feat_match,
"gen_adv": criterion_gen_adv,
"dis_adv": criterion_dis_adv,
"kl": criterion_kl,
},
dataloader=dev_dataloader,
lambda_adv=config.lambda_adv,
lambda_mel=config.lambda_mel,
lambda_kl=config.lambda_kl,
lambda_feat_match=config.lambda_feat_match,
lambda_dur=config.lambda_dur,
generator_first=config.generator_first,
output_dir=output_dir)
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
print("Trainer Done!")
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.")
parser.add_argument(
"--config", type=str, help="config file to overwrite default config.")
parser.add_argument("--train-metadata", type=str, help="training data.")
parser.add_argument("--dev-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.ngpu > 1:
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
else:
train_sp(args, config)
if __name__ == "__main__":
main()

@ -122,7 +122,7 @@ def voice_cloning(args):
def parse_args():
# parse args and config and redirect to train_sp
# parse args and config
parser = argparse.ArgumentParser(description="")
parser.add_argument(
'--am',
@ -134,7 +134,7 @@ def parse_args():
'--am_config',
type=str,
default=None,
help='Config of acoustic model. Use deault config when it is None.')
help='Config of acoustic model.')
parser.add_argument(
'--am_ckpt',
type=str,
@ -163,7 +163,7 @@ def parse_args():
'--voc_config',
type=str,
default=None,
help='Config of voc. Use deault config when it is None.')
help='Config of voc.')
parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument(

@ -18,5 +18,6 @@ from .parallel_wavegan import *
from .speedyspeech import *
from .tacotron2 import *
from .transformer_tts import *
from .vits import *
from .waveflow import *
from .wavernn import *

@ -68,8 +68,8 @@ class PWGUpdater(StandardUpdater):
self.discriminator_train_start_steps = discriminator_train_start_steps
self.lambda_adv = lambda_adv
self.lambda_aux = lambda_aux
self.state = UpdaterState(iteration=0, epoch=0)
self.state = UpdaterState(iteration=0, epoch=0)
self.train_iterator = iter(self.dataloader)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())

@ -11,3 +11,5 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .vits import *
from .vits_updater import *

@ -318,7 +318,6 @@ class VITSGenerator(nn.Layer):
g = g + g_
# forward posterior encoder
z, m_q, logs_q, y_mask = self.posterior_encoder(
feats, feats_lengths, g=g)

@ -27,12 +27,7 @@ from paddlespeech.t2s.models.hifigan import HiFiGANMultiScaleMultiPeriodDiscrimi
from paddlespeech.t2s.models.hifigan import HiFiGANPeriodDiscriminator
from paddlespeech.t2s.models.hifigan import HiFiGANScaleDiscriminator
from paddlespeech.t2s.models.vits.generator import VITSGenerator
from paddlespeech.t2s.modules.losses import DiscriminatorAdversarialLoss
from paddlespeech.t2s.modules.losses import FeatureMatchLoss
from paddlespeech.t2s.modules.losses import GeneratorAdversarialLoss
from paddlespeech.t2s.modules.losses import KLDivergenceLoss
from paddlespeech.t2s.modules.losses import MelSpectrogramLoss
from paddlespeech.t2s.modules.nets_utils import get_segments
from paddlespeech.t2s.modules.nets_utils import initialize
AVAILABLE_GENERATERS = {
"vits_generator": VITSGenerator,
@ -157,37 +152,8 @@ class VITS(nn.Layer):
"use_spectral_norm": False,
},
},
# loss related
generator_adv_loss_params: Dict[str, Any]={
"average_by_discriminators": False,
"loss_type": "mse",
},
discriminator_adv_loss_params: Dict[str, Any]={
"average_by_discriminators": False,
"loss_type": "mse",
},
feat_match_loss_params: Dict[str, Any]={
"average_by_discriminators": False,
"average_by_layers": False,
"include_final_outputs": True,
},
mel_loss_params: Dict[str, Any]={
"fs": 22050,
"fft_size": 1024,
"hop_size": 256,
"win_length": None,
"window": "hann",
"num_mels": 80,
"fmin": 0,
"fmax": None,
"log_base": None,
},
lambda_adv: float=1.0,
lambda_mel: float=45.0,
lambda_feat_match: float=2.0,
lambda_dur: float=1.0,
lambda_kl: float=1.0,
cache_generator_outputs: bool=True, ):
cache_generator_outputs: bool=True,
init_type: str="xavier_uniform", ):
"""Initialize VITS module.
Args:
idim (int): Input vocabrary size.
@ -200,22 +166,14 @@ class VITS(nn.Layer):
generator_params (Dict[str, Any]): Parameter dict for generator.
discriminator_type (str): Discriminator type.
discriminator_params (Dict[str, Any]): Parameter dict for discriminator.
generator_adv_loss_params (Dict[str, Any]): Parameter dict for generator
adversarial loss.
discriminator_adv_loss_params (Dict[str, Any]): Parameter dict for
discriminator adversarial loss.
feat_match_loss_params (Dict[str, Any]): Parameter dict for feat match loss.
mel_loss_params (Dict[str, Any]): Parameter dict for mel loss.
lambda_adv (float): Loss scaling coefficient for adversarial loss.
lambda_mel (float): Loss scaling coefficient for mel spectrogram loss.
lambda_feat_match (float): Loss scaling coefficient for feat match loss.
lambda_dur (float): Loss scaling coefficient for duration loss.
lambda_kl (float): Loss scaling coefficient for KL divergence loss.
cache_generator_outputs (bool): Whether to cache generator outputs.
"""
assert check_argument_types()
super().__init__()
# initialize parameters
initialize(self, init_type)
# define modules
generator_class = AVAILABLE_GENERATERS[generator_type]
if generator_type == "vits_generator":
@ -229,22 +187,8 @@ class VITS(nn.Layer):
discriminator_class = AVAILABLE_DISCRIMINATORS[discriminator_type]
self.discriminator = discriminator_class(
**discriminator_params, )
self.generator_adv_loss = GeneratorAdversarialLoss(
**generator_adv_loss_params, )
self.discriminator_adv_loss = DiscriminatorAdversarialLoss(
**discriminator_adv_loss_params, )
self.feat_match_loss = FeatureMatchLoss(
**feat_match_loss_params, )
self.mel_loss = MelSpectrogramLoss(
**mel_loss_params, )
self.kl_loss = KLDivergenceLoss()
# coefficients
self.lambda_adv = lambda_adv
self.lambda_mel = lambda_mel
self.lambda_kl = lambda_kl
self.lambda_feat_match = lambda_feat_match
self.lambda_dur = lambda_dur
nn.initializer.set_global_initializer(None)
# cache
self.cache_generator_outputs = cache_generator_outputs
@ -259,15 +203,8 @@ class VITS(nn.Layer):
self.langs = self.generator.langs
self.spk_embed_dim = self.generator.spk_embed_dim
@property
def require_raw_speech(self):
"""Return whether or not speech is required."""
return True
@property
def require_vocoder(self):
"""Return whether or not vocoder is required."""
return False
self.reuse_cache_gen = True
self.reuse_cache_dis = True
def forward(
self,
@ -334,21 +271,15 @@ class VITS(nn.Layer):
spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim).
lids (Optional[Tensor]): Language index tensor (B,) or (B, 1).
Returns:
Dict[str, Any]:
* loss (Tensor): Loss scalar tensor.
* stats (Dict[str, float]): Statistics to be monitored.
* weight (Tensor): Weight tensor to summarize losses.
* optim_idx (int): Optimizer index (0 for G and 1 for D).
"""
# setup
batch_size = paddle.shape(text)[0]
feats = feats.transpose([0, 2, 1])
# speech = speech.unsqueeze(1)
# calculate generator outputs
reuse_cache = True
self.reuse_cache_gen = True
if not self.cache_generator_outputs or self._cache is None:
reuse_cache = False
self.reuse_cache_gen = False
outs = self.generator(
text=text,
text_lengths=text_lengths,
@ -361,59 +292,10 @@ class VITS(nn.Layer):
outs = self._cache
# store cache
if self.training and self.cache_generator_outputs and not reuse_cache:
if self.training and self.cache_generator_outputs and not self.reuse_cache_gen:
self._cache = outs
return outs
"""
# parse outputs
speech_hat_, dur_nll, _, start_idxs, _, z_mask, outs_ = outs
_, z_p, m_p, logs_p, _, logs_q = outs_
speech_ = get_segments(
x=speech,
start_idxs=start_idxs * self.generator.upsample_factor,
segment_size=self.generator.segment_size *
self.generator.upsample_factor, )
# calculate discriminator outputs
p_hat = self.discriminator(speech_hat_)
with paddle.no_grad():
# do not store discriminator gradient in generator turn
p = self.discriminator(speech_)
# calculate losses
mel_loss = self.mel_loss(speech_hat_, speech_)
kl_loss = self.kl_loss(z_p, logs_q, m_p, logs_p, z_mask)
dur_loss = paddle.sum(dur_nll.float())
adv_loss = self.generator_adv_loss(p_hat)
feat_match_loss = self.feat_match_loss(p_hat, p)
mel_loss = mel_loss * self.lambda_mel
kl_loss = kl_loss * self.lambda_kl
dur_loss = dur_loss * self.lambda_dur
adv_loss = adv_loss * self.lambda_adv
feat_match_loss = feat_match_loss * self.lambda_feat_match
loss = mel_loss + kl_loss + dur_loss + adv_loss + feat_match_loss
stats = dict(
generator_loss=loss.item(),
generator_mel_loss=mel_loss.item(),
generator_kl_loss=kl_loss.item(),
generator_dur_loss=dur_loss.item(),
generator_adv_loss=adv_loss.item(),
generator_feat_match_loss=feat_match_loss.item(), )
# reset cache
if reuse_cache or not self.training:
self._cache = None
return {
"loss": loss,
"stats": stats,
# "weight": weight,
"optim_idx": 0, # needed for trainer
}
"""
def _forward_discrminator(
self,
@ -434,21 +316,15 @@ class VITS(nn.Layer):
spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim).
lids (Optional[Tensor]): Language index tensor (B,) or (B, 1).
Returns:
Dict[str, Any]:
* loss (Tensor): Loss scalar tensor.
* stats (Dict[str, float]): Statistics to be monitored.
* weight (Tensor): Weight tensor to summarize losses.
* optim_idx (int): Optimizer index (0 for G and 1 for D).
"""
# setup
batch_size = paddle.shape(text)[0]
feats = feats.transpose([0, 2, 1])
# speech = speech.unsqueeze(1)
# calculate generator outputs
reuse_cache = True
self.reuse_cache_dis = True
if not self.cache_generator_outputs or self._cache is None:
reuse_cache = False
self.reuse_cache_dis = False
outs = self.generator(
text=text,
text_lengths=text_lengths,
@ -461,44 +337,10 @@ class VITS(nn.Layer):
outs = self._cache
# store cache
if self.cache_generator_outputs and not reuse_cache:
if self.cache_generator_outputs and not self.reuse_cache_dis:
self._cache = outs
return outs
"""
# parse outputs
speech_hat_, _, _, start_idxs, *_ = outs
speech_ = get_segments(
x=speech,
start_idxs=start_idxs * self.generator.upsample_factor,
segment_size=self.generator.segment_size *
self.generator.upsample_factor, )
# calculate discriminator outputs
p_hat = self.discriminator(speech_hat_.detach())
p = self.discriminator(speech_)
# calculate losses
real_loss, fake_loss = self.discriminator_adv_loss(p_hat, p)
loss = real_loss + fake_loss
stats = dict(
discriminator_loss=loss.item(),
discriminator_real_loss=real_loss.item(),
discriminator_fake_loss=fake_loss.item(), )
# reset cache
if reuse_cache or not self.training:
self._cache = None
return {
"loss": loss,
"stats": stats,
# "weight": weight,
"optim_idx": 1, # needed for trainer
}
"""
def inference(
self,
@ -535,10 +377,7 @@ class VITS(nn.Layer):
# setup
text = text[None]
text_lengths = paddle.to_tensor(paddle.shape(text)[1])
# if sids is not None:
# sids = sids.view(1)
# if lids is not None:
# lids = lids.view(1)
if durations is not None:
durations = paddle.reshape(durations, [1, 1, -1])

@ -0,0 +1,353 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddle.optimizer.lr import LRScheduler
from paddlespeech.t2s.modules.nets_utils import get_segments
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
from paddlespeech.t2s.training.reporter import report
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
from paddlespeech.t2s.training.updaters.standard_updater import UpdaterState
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class VITSUpdater(StandardUpdater):
def __init__(self,
model: Layer,
optimizers: Dict[str, Optimizer],
criterions: Dict[str, Layer],
schedulers: Dict[str, LRScheduler],
dataloader: DataLoader,
generator_train_start_steps: int=0,
discriminator_train_start_steps: int=100000,
lambda_adv: float=1.0,
lambda_mel: float=45.0,
lambda_feat_match: float=2.0,
lambda_dur: float=1.0,
lambda_kl: float=1.0,
generator_first: bool=False,
output_dir=None):
# it is designed to hold multiple models
# 因为输入的是单模型,但是没有用到父类的 init(), 所以需要重新写这部分
models = {"main": model}
self.models: Dict[str, Layer] = models
# self.model = model
self.model = model._layers if isinstance(model, paddle.DataParallel) else model
self.optimizers = optimizers
self.optimizer_g: Optimizer = optimizers['generator']
self.optimizer_d: Optimizer = optimizers['discriminator']
self.criterions = criterions
self.criterion_mel = criterions['mel']
self.criterion_feat_match = criterions['feat_match']
self.criterion_gen_adv = criterions["gen_adv"]
self.criterion_dis_adv = criterions["dis_adv"]
self.criterion_kl = criterions["kl"]
self.schedulers = schedulers
self.scheduler_g = schedulers['generator']
self.scheduler_d = schedulers['discriminator']
self.dataloader = dataloader
self.generator_train_start_steps = generator_train_start_steps
self.discriminator_train_start_steps = discriminator_train_start_steps
self.lambda_adv = lambda_adv
self.lambda_mel = lambda_mel
self.lambda_feat_match = lambda_feat_match
self.lambda_dur = lambda_dur
self.lambda_kl = lambda_kl
if generator_first:
self.turns = ["generator", "discriminator"]
else:
self.turns = ["discriminator", "generator"]
self.state = UpdaterState(iteration=0, epoch=0)
self.train_iterator = iter(self.dataloader)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
for turn in self.turns:
speech = batch["speech"]
speech = speech.unsqueeze(1)
outs = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
feats=batch["feats"],
feats_lengths=batch["feats_lengths"],
forward_generator=turn == "generator")
# Generator
if turn == "generator":
# parse outputs
speech_hat_, dur_nll, _, start_idxs, _, z_mask, outs_ = outs
_, z_p, m_p, logs_p, _, logs_q = outs_
speech_ = get_segments(
x=speech,
start_idxs=start_idxs *
self.model.generator.upsample_factor,
segment_size=self.model.generator.segment_size *
self.model.generator.upsample_factor, )
# calculate discriminator outputs
p_hat = self.model.discriminator(speech_hat_)
with paddle.no_grad():
# do not store discriminator gradient in generator turn
p = self.model.discriminator(speech_)
# calculate losses
mel_loss = self.criterion_mel(speech_hat_, speech_)
kl_loss = self.criterion_kl(z_p, logs_q, m_p, logs_p, z_mask)
dur_loss = paddle.sum(dur_nll)
adv_loss = self.criterion_gen_adv(p_hat)
feat_match_loss = self.criterion_feat_match(p_hat, p)
mel_loss = mel_loss * self.lambda_mel
kl_loss = kl_loss * self.lambda_kl
dur_loss = dur_loss * self.lambda_dur
adv_loss = adv_loss * self.lambda_adv
feat_match_loss = feat_match_loss * self.lambda_feat_match
gen_loss = mel_loss + kl_loss + dur_loss + adv_loss + feat_match_loss
report("train/generator_loss", float(gen_loss))
report("train/generator_mel_loss", float(mel_loss))
report("train/generator_kl_loss", float(kl_loss))
report("train/generator_dur_loss", float(dur_loss))
report("train/generator_adv_loss", float(adv_loss))
report("train/generator_feat_match_loss",
float(feat_match_loss))
losses_dict["generator_loss"] = float(gen_loss)
losses_dict["generator_mel_loss"] = float(mel_loss)
losses_dict["generator_kl_loss"] = float(kl_loss)
losses_dict["generator_dur_loss"] = float(dur_loss)
losses_dict["generator_adv_loss"] = float(adv_loss)
losses_dict["generator_feat_match_loss"] = float(
feat_match_loss)
self.optimizer_g.clear_grad()
gen_loss.backward()
self.optimizer_g.step()
self.scheduler_g.step()
# reset cache
if self.model.reuse_cache_gen or not self.model.training:
self.model._cache = None
# Disctiminator
elif turn == "discriminator":
# parse outputs
speech_hat_, _, _, start_idxs, *_ = outs
speech_ = get_segments(
x=speech,
start_idxs=start_idxs *
self.model.generator.upsample_factor,
segment_size=self.model.generator.segment_size *
self.model.generator.upsample_factor, )
# calculate discriminator outputs
p_hat = self.model.discriminator(speech_hat_.detach())
p = self.model.discriminator(speech_)
# calculate losses
real_loss, fake_loss = self.criterion_dis_adv(p_hat, p)
dis_loss = real_loss + fake_loss
report("train/real_loss", float(real_loss))
report("train/fake_loss", float(fake_loss))
report("train/discriminator_loss", float(dis_loss))
losses_dict["real_loss"] = float(real_loss)
losses_dict["fake_loss"] = float(fake_loss)
losses_dict["discriminator_loss"] = float(dis_loss)
self.optimizer_d.clear_grad()
dis_loss.backward()
self.optimizer_d.step()
self.scheduler_d.step()
# reset cache
if self.model.reuse_cache_dis or not self.model.training:
self.model._cache = None
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
class VITSEvaluator(StandardEvaluator):
def __init__(self,
model,
criterions: Dict[str, Layer],
dataloader: DataLoader,
lambda_adv: float=1.0,
lambda_mel: float=45.0,
lambda_feat_match: float=2.0,
lambda_dur: float=1.0,
lambda_kl: float=1.0,
generator_first: bool=False,
output_dir=None):
# 因为输入的是单模型,但是没有用到父类的 init(), 所以需要重新写这部分
models = {"main": model}
self.models: Dict[str, Layer] = models
# self.model = model
self.model = model._layers if isinstance(model, paddle.DataParallel) else model
self.criterions = criterions
self.criterion_mel = criterions['mel']
self.criterion_feat_match = criterions['feat_match']
self.criterion_gen_adv = criterions["gen_adv"]
self.criterion_dis_adv = criterions["dis_adv"]
self.criterion_kl = criterions["kl"]
self.dataloader = dataloader
self.lambda_adv = lambda_adv
self.lambda_mel = lambda_mel
self.lambda_feat_match = lambda_feat_match
self.lambda_dur = lambda_dur
self.lambda_kl = lambda_kl
if generator_first:
self.turns = ["generator", "discriminator"]
else:
self.turns = ["discriminator", "generator"]
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def evaluate_core(self, batch):
# logging.debug("Evaluate: ")
self.msg = "Evaluate: "
losses_dict = {}
for turn in self.turns:
speech = batch["speech"]
speech = speech.unsqueeze(1)
outs = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
feats=batch["feats"],
feats_lengths=batch["feats_lengths"],
forward_generator=turn == "generator")
# Generator
if turn == "generator":
# parse outputs
speech_hat_, dur_nll, _, start_idxs, _, z_mask, outs_ = outs
_, z_p, m_p, logs_p, _, logs_q = outs_
speech_ = get_segments(
x=speech,
start_idxs=start_idxs *
self.model.generator.upsample_factor,
segment_size=self.model.generator.segment_size *
self.model.generator.upsample_factor, )
# calculate discriminator outputs
p_hat = self.model.discriminator(speech_hat_)
with paddle.no_grad():
# do not store discriminator gradient in generator turn
p = self.model.discriminator(speech_)
# calculate losses
mel_loss = self.criterion_mel(speech_hat_, speech_)
kl_loss = self.criterion_kl(z_p, logs_q, m_p, logs_p, z_mask)
dur_loss = paddle.sum(dur_nll)
adv_loss = self.criterion_gen_adv(p_hat)
feat_match_loss = self.criterion_feat_match(p_hat, p)
mel_loss = mel_loss * self.lambda_mel
kl_loss = kl_loss * self.lambda_kl
dur_loss = dur_loss * self.lambda_dur
adv_loss = adv_loss * self.lambda_adv
feat_match_loss = feat_match_loss * self.lambda_feat_match
gen_loss = mel_loss + kl_loss + dur_loss + adv_loss + feat_match_loss
report("eval/generator_loss", float(gen_loss))
report("eval/generator_mel_loss", float(mel_loss))
report("eval/generator_kl_loss", float(kl_loss))
report("eval/generator_dur_loss", float(dur_loss))
report("eval/generator_adv_loss", float(adv_loss))
report("eval/generator_feat_match_loss", float(feat_match_loss))
losses_dict["generator_loss"] = float(gen_loss)
losses_dict["generator_mel_loss"] = float(mel_loss)
losses_dict["generator_kl_loss"] = float(kl_loss)
losses_dict["generator_dur_loss"] = float(dur_loss)
losses_dict["generator_adv_loss"] = float(adv_loss)
losses_dict["generator_feat_match_loss"] = float(
feat_match_loss)
# reset cache
if self.model.reuse_cache_gen or not self.model.training:
self.model._cache = None
# Disctiminator
elif turn == "discriminator":
# parse outputs
speech_hat_, _, _, start_idxs, *_ = outs
speech_ = get_segments(
x=speech,
start_idxs=start_idxs *
self.model.generator.upsample_factor,
segment_size=self.model.generator.segment_size *
self.model.generator.upsample_factor, )
# calculate discriminator outputs
p_hat = self.model.discriminator(speech_hat_.detach())
p = self.model.discriminator(speech_)
# calculate losses
real_loss, fake_loss = self.criterion_dis_adv(p_hat, p)
dis_loss = real_loss + fake_loss
report("eval/real_loss", float(real_loss))
report("eval/fake_loss", float(fake_loss))
report("eval/discriminator_loss", float(dis_loss))
losses_dict["real_loss"] = float(real_loss)
losses_dict["fake_loss"] = float(fake_loss)
losses_dict["discriminator_loss"] = float(dis_loss)
# reset cache
if self.model.reuse_cache_dis or not self.model.training:
self.model._cache = None
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)

@ -14,6 +14,14 @@
import paddle
from paddle import nn
scheduler_classes = dict(
ReduceOnPlateau=paddle.optimizer.lr.ReduceOnPlateau,
lambda_decay=paddle.optimizer.lr.LambdaDecay,
step_decay=paddle.optimizer.lr.StepDecay,
multistep_decay=paddle.optimizer.lr.MultiStepDecay,
exponential_decay=paddle.optimizer.lr.ExponentialDecay,
CosineAnnealingDecay=paddle.optimizer.lr.CosineAnnealingDecay, )
optim_classes = dict(
adadelta=paddle.optimizer.Adadelta,
adagrad=paddle.optimizer.Adagrad,

@ -0,0 +1,13 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

@ -0,0 +1,38 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
import importlib
__all__ = ["dynamic_import"]
def dynamic_import(import_path, alias=dict()):
"""dynamic import module and class
:param str import_path: syntax 'module_name:class_name'
e.g., 'paddlespeech.s2t.models.u2:U2Model'
:param dict alias: shortcut for registered class
:return: imported class
"""
if import_path not in alias and ":" not in import_path:
raise ValueError(
"import_path should be one of {} or "
'include ":", e.g. "paddlespeech.s2t.models.u2:U2Model" : '
"{}".format(set(alias), import_path))
if ":" not in import_path:
import_path = alias[import_path]
module_name, objname = import_path.split(":")
m = importlib.import_module(module_name)
return getattr(m, objname)
Loading…
Cancel
Save