parent
2d7cf7f0e6
commit
8b5608741c
@ -0,0 +1,205 @@
|
||||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
import typing
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
__all__ = [
|
||||
"fft_conv1d",
|
||||
"FFTConv1d",
|
||||
]
|
||||
|
||||
|
||||
def __unfold(_input, kernel_size: int, stride: int):
|
||||
"""1D only unfolding similar to the one from Paddlepaddle.
|
||||
|
||||
Notes
|
||||
------
|
||||
Given an _input tensor of size `[*, T]` this will return
|
||||
a tensor `[*, F, K]` with `K` the kernel size, and `F` the number
|
||||
of frames. The i-th frame is a view onto `i * stride: i * stride + kernel_size`.
|
||||
This will automatically pad the _input to cover at least once all entries in `_input`.
|
||||
|
||||
Args:
|
||||
_input (Tensor):
|
||||
tensor for which to return the frames.
|
||||
kernel_size (int):
|
||||
size of each frame.
|
||||
stride (int):
|
||||
stride between each frame.
|
||||
"""
|
||||
shape = list(_input.shape)
|
||||
length = shape.pop(-1)
|
||||
n_frames = math.ceil((max(length, kernel_size) - kernel_size) / stride) + 1
|
||||
tgt_length = (n_frames - 1) * stride + kernel_size
|
||||
padded = F.pad(_input, (0, tgt_length - length), data_format="NCL")
|
||||
strides: typing.List[int] = []
|
||||
for dim in range(padded.dim()):
|
||||
strides.append(padded.strides[dim])
|
||||
assert strides.pop(-1) == 1, "data should be contiguous"
|
||||
strides = strides + [stride, 1]
|
||||
return padded.as_strided(shape + [n_frames, kernel_size], strides)
|
||||
|
||||
|
||||
def fft_conv1d(
|
||||
_input: paddle.Tensor,
|
||||
weight: paddle.Tensor,
|
||||
bias: Optional[paddle.Tensor]=None,
|
||||
stride: int=1,
|
||||
padding: int=0,
|
||||
block_ratio: float=5, ):
|
||||
"""
|
||||
Same as `paddle.nn.functional.conv1d` but using FFT for the convolution.
|
||||
Please check PaddlePaddle documentation for more information.
|
||||
|
||||
Notes
|
||||
------
|
||||
This function is faster than `paddle.nn.functional.conv1d` only in specific cases.
|
||||
Typically, the kernel size should be of the order of 256 to see any real gain,
|
||||
for a stride of 1.
|
||||
Dilation and groups are not supported at the moment. This function might use
|
||||
more memory than the default Conv1d implementation.
|
||||
|
||||
Args:
|
||||
_input (Tensor):
|
||||
_input signal of shape `[B, C, T]`.
|
||||
weight (Tensor):
|
||||
weight of the convolution `[D, C, K]` with `D` the number of output channels.
|
||||
bias (Tensor or None):
|
||||
if not None, bias term for the convolution.
|
||||
stride (int):
|
||||
stride of convolution.
|
||||
padding (int):
|
||||
padding to apply to the _input.
|
||||
block_ratio (float):
|
||||
can be tuned for speed. The _input is splitted in chunks with a size of `int(block_ratio * kernel_size)`.
|
||||
|
||||
Shape:
|
||||
|
||||
- Inputs: `_input` is `[B, C, T]`, `weight` is `[D, C, K]` and bias is `[D]`.
|
||||
- Output: `(*, T)`
|
||||
"""
|
||||
_input = F.pad(_input, (padding, padding), data_format="NCL")
|
||||
batch, _, length = _input.shape
|
||||
out_channels, _, kernel_size = weight.shape
|
||||
|
||||
if length < kernel_size:
|
||||
raise RuntimeError(
|
||||
f"Input should be at least as large as the kernel size {kernel_size}, "
|
||||
f"but it is only {length} samples long.")
|
||||
if block_ratio < 1:
|
||||
raise RuntimeError("Block ratio must be greater than 1.")
|
||||
|
||||
block_size: int = min(int(kernel_size * block_ratio), length)
|
||||
fold_stride = block_size - kernel_size + 1
|
||||
# weight = pad_to(weight, block_size)
|
||||
|
||||
weight = F.pad(
|
||||
weight, (0, block_size - weight.shape[-1]),
|
||||
mode="constant",
|
||||
value=0.0,
|
||||
data_format="NCL")
|
||||
|
||||
weight_z = paddle.fft.rfft(weight, axis=-1)
|
||||
|
||||
# We pad the _input and get the different frames, on which
|
||||
frames = __unfold(_input, block_size, fold_stride)
|
||||
|
||||
frames_z = paddle.fft.rfft(frames, axis=-1)
|
||||
weight_z_coml = paddle.conj(weight_z)
|
||||
out_z = paddle.einsum("bcft,dct->bdft", frames_z, weight_z_coml)
|
||||
out = paddle.fft.irfft(out_z, n=block_size, axis=-1)
|
||||
|
||||
# The last bit is invalid, because FFT will do a circular convolution.
|
||||
out = out[..., :-kernel_size + 1]
|
||||
out = out.reshape([batch, out_channels, -1])
|
||||
out = out[..., ::stride]
|
||||
target_length = (length - kernel_size) // stride + 1
|
||||
out = out[..., :target_length]
|
||||
if bias is not None:
|
||||
out += bias[:, None]
|
||||
return out
|
||||
|
||||
|
||||
class FFTConv1d(paddle.nn.Layer):
|
||||
"""
|
||||
Same as `paddle.nn.Conv1D` but based on a custom FFT-based convolution.
|
||||
Please check PaddlePaddle documentation for more information on `paddle.nn.Conv1D`.
|
||||
|
||||
Notes
|
||||
------
|
||||
This module is faster than `paddle.nn.Conv1D` only in specific cases.
|
||||
Typically, `kernel_size` should be of the order of 256 to see any real gain,
|
||||
for a stride of 1.
|
||||
Dilation and groups are not supported at the moment. This module might use
|
||||
more memory than the default Conv1D implementation.
|
||||
|
||||
Args:
|
||||
in_channels (int):
|
||||
number of _input channels.
|
||||
out_channels (int):
|
||||
number of output channels.
|
||||
kernel_size (int):
|
||||
kernel size of convolution.
|
||||
stride (int):
|
||||
stride of convolution.
|
||||
padding (int):
|
||||
padding to apply to the _input.
|
||||
bias (bool):
|
||||
if True, use a bias term.
|
||||
|
||||
Examples:
|
||||
>>> fftconv = FFTConv1d(12, 24, 128, 4)
|
||||
>>> x = paddle.randn([4, 12, 1024])
|
||||
>>> print(list(fftconv(x).shape))
|
||||
[4, 24, 225]
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int=1,
|
||||
padding: int=0,
|
||||
bias: bool=True, ):
|
||||
super(FFTConv1d, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
|
||||
# Create a Conv1D layer to initialize weights and bias
|
||||
conv = paddle.nn.Conv1D(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias_attr=bias)
|
||||
self.weight = conv.weight
|
||||
if bias:
|
||||
self.bias = conv.bias
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def forward(self, _input: paddle.Tensor):
|
||||
return fft_conv1d(_input, self.weight, self.bias, self.stride,
|
||||
self.padding)
|
@ -0,0 +1,128 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle.nn import Conv1D
|
||||
|
||||
from paddlespeech.t2s.modules import fft_conv1d
|
||||
from paddlespeech.t2s.modules import FFTConv1d
|
||||
|
||||
|
||||
class TestFFTConv1d(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.batch_size = 4
|
||||
self.in_channels = 3
|
||||
self.out_channels = 16
|
||||
self.kernel_size = 5
|
||||
self.stride = 1
|
||||
self.padding = 1
|
||||
self.input_length = 32
|
||||
|
||||
def _init_models(self, in_channels, out_channels, kernel_size, stride,
|
||||
padding):
|
||||
x = paddle.randn([self.batch_size, in_channels, self.input_length])
|
||||
conv1d = paddle.nn.Conv1D(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding)
|
||||
fft_conv1d = FFTConv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding)
|
||||
fft_conv1d.weight.set_value(conv1d.weight.numpy())
|
||||
if conv1d.bias is not None:
|
||||
fft_conv1d.bias.set_value(conv1d.bias.numpy())
|
||||
return x, conv1d, fft_conv1d
|
||||
|
||||
def test_fft_conv1d_vs_conv1d_default(self):
|
||||
x, conv1d, fft_conv1d = self._init_models(
|
||||
self.in_channels, self.out_channels, self.kernel_size, self.stride,
|
||||
self.padding)
|
||||
out_conv1d = conv1d(x)
|
||||
out_fft_conv1d = fft_conv1d(x)
|
||||
self.assertTrue(
|
||||
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-5))
|
||||
|
||||
def test_fft_conv1d_vs_conv1d_no_padding(self):
|
||||
x, conv1d, fft_conv1d = self._init_models(
|
||||
self.in_channels, self.out_channels, self.kernel_size, self.stride,
|
||||
0)
|
||||
out_conv1d = conv1d(x)
|
||||
out_fft_conv1d = fft_conv1d(x)
|
||||
self.assertTrue(
|
||||
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-5))
|
||||
|
||||
def test_fft_conv1d_vs_conv1d_large_kernel(self):
|
||||
kernel_size = 256
|
||||
padding = kernel_size - 1
|
||||
x, conv1d, fft_conv1d = self._init_models(
|
||||
self.in_channels, self.out_channels, kernel_size, self.stride,
|
||||
padding)
|
||||
out_conv1d = conv1d(x)
|
||||
out_fft_conv1d = fft_conv1d(x)
|
||||
self.assertTrue(
|
||||
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-5))
|
||||
|
||||
def test_fft_conv1d_vs_conv1d_stride_2(self):
|
||||
x, conv1d, fft_conv1d = self._init_models(
|
||||
self.in_channels, self.out_channels, self.kernel_size, 2,
|
||||
self.padding)
|
||||
out_conv1d = conv1d(x)
|
||||
out_fft_conv1d = fft_conv1d(x)
|
||||
self.assertTrue(
|
||||
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-5))
|
||||
|
||||
def test_fft_conv1d_vs_conv1d_different_input_length(self):
|
||||
input_length = 1024
|
||||
x, conv1d, fft_conv1d = self._init_models(
|
||||
self.in_channels, self.out_channels, self.kernel_size, self.stride,
|
||||
self.padding)
|
||||
x = paddle.randn([self.batch_size, self.in_channels, input_length])
|
||||
out_conv1d = conv1d(x)
|
||||
out_fft_conv1d = fft_conv1d(x)
|
||||
self.assertTrue(
|
||||
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-5))
|
||||
|
||||
def test_fft_conv1d_vs_conv1d_no_bias(self):
|
||||
conv1d = paddle.nn.Conv1D(
|
||||
self.in_channels,
|
||||
self.out_channels,
|
||||
self.kernel_size,
|
||||
stride=self.stride,
|
||||
padding=self.padding,
|
||||
bias_attr=False)
|
||||
fft_conv1d = FFTConv1d(
|
||||
self.in_channels,
|
||||
self.out_channels,
|
||||
self.kernel_size,
|
||||
stride=self.stride,
|
||||
padding=self.padding,
|
||||
bias=False)
|
||||
fft_conv1d.weight.set_value(conv1d.weight.numpy())
|
||||
x = paddle.randn([self.batch_size, self.in_channels, self.input_length])
|
||||
out_conv1d = conv1d(x)
|
||||
out_fft_conv1d = fft_conv1d(x)
|
||||
self.assertTrue(
|
||||
np.allclose(out_conv1d.numpy(), out_fft_conv1d.numpy(), atol=1e-5))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue