Merge branch 'PaddlePaddle:develop' into database-search

pull/1916/head
qingen 3 years ago committed by GitHub
commit 892ea08a2e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -12,6 +12,8 @@ exclude =
.git,
# python cache
__pycache__,
# third party
utils/compute-wer.py,
third_party/,
# Provide a comma-separate list of glob patterns to include for checks.
filename =

@ -1,19 +1,10 @@
([简体中文](./README_cn.md)|English)
<p align="center">
<img src="./docs/images/PaddleSpeech_logo.png" />
</p>
<div align="center">
<h3>
<a href="#quick-start"> Quick Start </a>
| <a href="#quick-start-server"> Quick Start Server </a>
| <a href="#documents"> Documents </a>
| <a href="#model-list"> Models List </a>
</div>
------------------------------------------------------------------------------------
<p align="center">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-red.svg"></a>
@ -28,6 +19,20 @@
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://static.pepy.tech/badge/paddlespeech"></a>
<a href="https://huggingface.co/spaces"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"></a>
</p>
<div align="center">
<h3>
| <a href="#quick-start"> Quick Start </a>
| <a href="#quick-start-server"> Quick Start Server </a>
| <a href="#quick-start-streaming-server"> Quick Start Streaming Server</a>
|
</br>
| <a href="#documents"> Documents </a>
| <a href="#model-list"> Models List </a>
|
</h3>
</div>
**PaddleSpeech** is an open-source toolkit on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform for a variety of critical tasks in speech and audio, with the state-of-art and influential models.
@ -142,26 +147,6 @@ For more synthesized audios, please refer to [PaddleSpeech Text-to-Speech sample
</div>
### ⭐ Examples
- **[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo): Use PaddleSpeech TTS to generate virtual human voice.**
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech Demo Video](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
- **[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk): Use PaddleSpeech TTS and ASR to clone voice from videos.**
<div align="center">
<img src="https://raw.githubusercontent.com/jerryuhoo/VTuberTalk/main/gui/gui.png" width = "500px" />
</div>
### 🔥 Hot Activities
- 2021.12.21~12.24
4 Days Live Courses: Depth interpretation of PaddleSpeech!
**Courses videos and related materials: https://aistudio.baidu.com/aistudio/education/group/info/25130**
### Features
@ -174,11 +159,22 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision
- 🔬 *Integration of mainstream models and datasets*: the toolkit implements modules that participate in the whole pipeline of the speech tasks, and uses mainstream datasets like LibriSpeech, LJSpeech, AIShell, CSMSC, etc. See also [model list](#model-list) for more details.
- 🧩 *Cascaded models application*: as an extension of the typical traditional audio tasks, we combine the workflows of the aforementioned tasks with other fields like Natural language processing (NLP) and Computer Vision (CV).
### Recent Update
### 🔥 Hot Activities
<!---
2021.12.14: We would like to have an online courses to introduce basics and research of speech, as well as code practice with `paddlespeech`. Please pay attention to our [Calendar](https://www.paddlepaddle.org.cn/live).
--->
- 2021.12.21~12.24
4 Days Live Courses: Depth interpretation of PaddleSpeech!
**Courses videos and related materials: https://aistudio.baidu.com/aistudio/education/group/info/25130**
### Recent Update
- 👏🏻 2022.04.28: PaddleSpeech Streaming Server is available for Automatic Speech Recognition and Text-to-Speech.
- 👏🏻 2022.03.28: PaddleSpeech Server is available for Audio Classification, Automatic Speech Recognition and Text-to-Speech.
- 👏🏻 2022.03.28: PaddleSpeech CLI is available for Speaker Verification.
- 🤗 2021.12.14: Our PaddleSpeech [ASR](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR) and [TTS](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS) Demos on Hugging Face Spaces are available!
@ -196,6 +192,7 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision
We strongly recommend our users to install PaddleSpeech in **Linux** with *python>=3.7*.
Up to now, **Linux** supports CLI for the all our tasks, **Mac OSX** and **Windows** only supports PaddleSpeech CLI for Audio Classification, Speech-to-Text and Text-to-Speech. To install `PaddleSpeech`, please see [installation](./docs/source/install.md).
<a name="quickstart"></a>
## Quick Start
@ -238,7 +235,7 @@ paddlespeech tts --input "你好,欢迎使用飞桨深度学习框架!" --ou
**Batch Process**
```
echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts
```
```
**Shell Pipeline**
- ASR + Punctuation Restoration
@ -257,16 +254,19 @@ If you want to try more functions like training and tuning, please have a look a
Developers can have a try of our speech server with [PaddleSpeech Server Command Line](./paddlespeech/server/README.md).
**Start server**
```shell
paddlespeech_server start --config_file ./paddlespeech/server/conf/application.yaml
```
**Access Speech Recognition Services**
```shell
paddlespeech_client asr --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
```
**Access Text to Speech Services**
```shell
paddlespeech_client tts --server_ip 127.0.0.1 --port 8090 --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav
```
@ -280,6 +280,37 @@ paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav
For more information about server command lines, please see: [speech server demos](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/speech_server)
<a name="quickstartstreamingserver"></a>
## Quick Start Streaming Server
Developers can have a try of [streaming asr](./demos/streaming_asr_server/README.md) and [streaming tts](./demos/streaming_tts_server/README.md) server.
**Start Streaming Speech Recognition Server**
```
paddlespeech_server start --config_file ./demos/streaming_asr_server/conf/application.yaml
```
**Access Streaming Speech Recognition Services**
```
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
```
**Start Streaming Text to Speech Server**
```
paddlespeech_server start --config_file ./demos/streaming_tts_server/conf/tts_online_application.yaml
```
**Access Streaming Text to Speech Services**
```
paddlespeech_client tts_online --server_ip 127.0.0.1 --port 8092 --protocol http --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav
```
For more information please see: [streaming asr](./demos/streaming_asr_server/README.md) and [streaming tts](./demos/streaming_tts_server/README.md)
<a name="ModelList"></a>
## Model List
@ -589,15 +620,31 @@ Normally, [Speech SoTA](https://paperswithcode.com/area/speech), [Audio SoTA](ht
The Text-to-Speech module is originally called [Parakeet](https://github.com/PaddlePaddle/Parakeet), and now merged with this repository. If you are interested in academic research about this task, please see [TTS research overview](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/docs/source/tts#overview). Also, [this document](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/tts/models_introduction.md) is a good guideline for the pipeline components.
## ⭐ Examples
- **[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo): Use PaddleSpeech TTS to generate virtual human voice.**
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech Demo Video](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
- **[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk): Use PaddleSpeech TTS and ASR to clone voice from videos.**
<div align="center">
<img src="https://raw.githubusercontent.com/jerryuhoo/VTuberTalk/main/gui/gui.png" width = "500px" />
</div>
## Citation
To cite PaddleSpeech for research, please use the following format.
```tex
@misc{ppspeech2021,
title={PaddleSpeech, a toolkit for audio processing based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleSpeech}},
year={2021}
@inproceedings{zhang2022paddlespeech,
title = {PaddleSpeech: An Easy-to-Use All-in-One Speech Toolkit},
author = {Hui Zhang, Tian Yuan, Junkun Chen, Xintong Li, Renjie Zheng, Yuxin Huang, Xiaojie Chen, Enlei Gong, Zeyu Chen, Xiaoguang Hu, dianhai yu, Yanjun Ma, Liang Huang},
booktitle = {Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations},
year = {2022},
publisher = {Association for Computational Linguistics},
}
@inproceedings{zheng2021fused,
@ -654,7 +701,6 @@ You are warmly welcome to submit questions in [discussions](https://github.com/P
## Acknowledgement
- Many thanks to [yeyupiaoling](https://github.com/yeyupiaoling)/[PPASR](https://github.com/yeyupiaoling/PPASR)/[PaddlePaddle-DeepSpeech](https://github.com/yeyupiaoling/PaddlePaddle-DeepSpeech)/[VoiceprintRecognition-PaddlePaddle](https://github.com/yeyupiaoling/VoiceprintRecognition-PaddlePaddle)/[AudioClassification-PaddlePaddle](https://github.com/yeyupiaoling/AudioClassification-PaddlePaddle) for years of attention, constructive advice and great help.
- Many thanks to [mymagicpower](https://github.com/mymagicpower) for the Java implementation of ASR upon [short](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_sdk) and [long](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_long_audio_sdk) audio files.
- Many thanks to [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) for developing Virtual Uploader(VUP)/Virtual YouTuber(VTuber) with PaddleSpeech TTS function.

@ -2,26 +2,45 @@
<p align="center">
<img src="./docs/images/PaddleSpeech_logo.png" />
</p>
<div align="center">
<h3>
<a href="#quick-start"> 快速开始 </a>
| <a href="#quick-start-server"> 快速使用服务 </a>
| <a href="#documents"> 教程文档 </a>
| <a href="#model-list"> 模型列表 </a>
</div>
------------------------------------------------------------------------------------
<p align="center">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-red.svg"></a>
<a href="support os"><img src="https://img.shields.io/badge/os-linux-yellow.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleSpeech?color=ffa"></a>
<a href="support os"><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleSpeech?color=9ea"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleSpeech?color=3af"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleSpeech?color=9cc"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleSpeech?color=ccf"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://img.shields.io/pypi/dm/PaddleSpeech"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://static.pepy.tech/badge/paddlespeech"></a>
<a href="https://huggingface.co/spaces"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"></a>
</p>
<div align="center">
<h3>
<a href="#quick-start"> Quick Start </a>
| <a href="#quick-start-server"> Quick Start Server </a>
| <a href="#quick-start-streaming-server"> Quick Start Streaming Server</a>
</br>
<a href="#documents"> Documents </a>
| <a href="#model-list"> Models List </a>
</h3>
</div>
------------------------------------------------------------------------------------
<div align="center">
<h3>
<a href="#quick-start"> 快速开始 </a>
| <a href="#quick-start-server"> 快速使用服务 </a>
| <a href="#quick-start-streaming-server"> 快速使用流式服务 </a>
| <a href="#documents"> 教程文档 </a>
| <a href="#model-list"> 模型列表 </a>
</div>
<!---
from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readmes-readable.md
@ -31,6 +50,8 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme
4.What is the goal of this project?
-->
**PaddleSpeech** 是基于飞桨 [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) 的语音方向的开源模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型,一些典型的应用示例如下:
##### 语音识别
@ -57,7 +78,6 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme
</td>
<td>我认为跑步最重要的就是给我带来了身体健康。</td>
</tr>
</tbody>
</table>
@ -143,19 +163,6 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme
</div>
### ⭐ 应用案例
- **[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo): 使用 PaddleSpeech 的语音合成模块生成虚拟人的声音。**
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech 示例视频](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
- **[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk): 使用 PaddleSpeech 的语音合成和语音识别从视频中克隆人声。**
<div align="center">
<img src="https://raw.githubusercontent.com/jerryuhoo/VTuberTalk/main/gui/gui.png" width = "500px" />
</div>
### 🔥 热门活动
@ -164,27 +171,32 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme
4 日直播课: 深度解读 PaddleSpeech 语音技术!
**直播回放与课件资料: https://aistudio.baidu.com/aistudio/education/group/info/25130**
### 特性
本项目采用了易用、高效、灵活以及可扩展的实现,旨在为工业应用、学术研究提供更好的支持,实现的功能包含训练、推断以及测试模块,以及部署过程,主要包括
- 📦 **易用性**: 安装门槛低,可使用 [CLI](#quick-start) 快速开始。
- 🏆 **对标 SoTA**: 提供了高速、轻量级模型,且借鉴了最前沿的技术。
- 💯 **基于规则的中文前端**: 我们的前端包含文本正则化和字音转换G2P。此外我们使用自定义语言规则来适应中文语境。
- **多种工业界以及学术界主流功能支持**:
- 🛎️ 典型音频任务: 本工具包提供了音频任务如音频分类、语音翻译、自动语音识别、文本转语音、语音合成等任务的实现。
- 🔬 主流模型及数据集: 本工具包实现了参与整条语音任务流水线的各个模块,并且采用了主流数据集如 LibriSpeech、LJSpeech、AIShell、CSMSC详情请见 [模型列表](#model-list)。
- 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。
### 近期更新
<!---
2021.12.14: We would like to have an online courses to introduce basics and research of speech, as well as code practice with `paddlespeech`. Please pay attention to our [Calendar](https://www.paddlepaddle.org.cn/live).
--->
- 👏🏻 2022.04.28: PaddleSpeech Streaming Server 上线! 覆盖了语音识别和语音合成。
- 👏🏻 2022.03.28: PaddleSpeech Server 上线! 覆盖了声音分类、语音识别、以及语音合成。
- 👏🏻 2022.03.28: PaddleSpeech CLI 上线声纹验证。
- 🤗 2021.12.14: Our PaddleSpeech [ASR](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR) and [TTS](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS) Demos on Hugging Face Spaces are available!
- 👏🏻 2021.12.10: PaddleSpeech CLI 上线!覆盖了声音分类、语音识别、语音翻译(英译中)以及语音合成。
### 特性
本项目采用了易用、高效、灵活以及可扩展的实现,旨在为工业应用、学术研究提供更好的支持,实现的功能包含训练、推断以及测试模块,以及部署过程,主要包括
- 📦 **易用性**: 安装门槛低,可使用 [CLI](#quick-start) 快速开始。
- 🏆 **对标 SoTA**: 提供了高速、轻量级模型,且借鉴了最前沿的技术。
- 💯 **基于规则的中文前端**: 我们的前端包含文本正则化和字音转换G2P。此外我们使用自定义语言规则来适应中文语境。
- **多种工业界以及学术界主流功能支持**:
- 🛎️ 典型音频任务: 本工具包提供了音频任务如音频分类、语音翻译、自动语音识别、文本转语音、语音合成等任务的实现。
- 🔬 主流模型及数据集: 本工具包实现了参与整条语音任务流水线的各个模块,并且采用了主流数据集如 LibriSpeech、LJSpeech、AIShell、CSMSC详情请见 [模型列表](#model-list)。
- 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。
### 技术交流群
微信扫描二维码(好友申请通过后回复【语音】)加入官方交流群,获得更高效的问题答疑,与各行各业开发者充分交流,期待您的加入。
@ -192,11 +204,13 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme
<img src="https://raw.githubusercontent.com/yt605155624/lanceTest/main/images/wechat_4.jpg" width = "300" />
</div>
## 安装
我们强烈建议用户在 **Linux** 环境下,*3.7* 以上版本的 *python* 上安装 PaddleSpeech。
目前为止,**Linux** 支持声音分类、语音识别、语音合成和语音翻译四种功能,**Mac OSX、 Windows** 下暂不支持语音翻译功能。 想了解具体安装细节,可以参考[安装文档](./docs/source/install_cn.md)。
## 快速开始
安装完成后,开发者可以通过命令行快速开始,改变 `--input` 可以尝试用自己的音频或文本测试。
@ -232,7 +246,7 @@ paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!
**批处理**
```
echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts
```
```
**Shell管道**
ASR + Punc:
@ -269,6 +283,38 @@ paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav
更多服务相关的命令行使用信息,请参考 [demos](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/speech_server)
<a name="quickstartstreamingserver"></a>
## 快速使用流式服务
开发者可以尝试[流式ASR](./demos/streaming_asr_server/README.md)和 [流式TTS](./demos/streaming_tts_server/README.md)服务.
**启动流式ASR服务**
```
paddlespeech_server start --config_file ./demos/streaming_asr_server/conf/application.yaml
```
**访问流式ASR服务**
```
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
```
**启动流式TTS服务**
```
paddlespeech_server start --config_file ./demos/streaming_tts_server/conf/tts_online_application.yaml
```
**访问流式TTS服务**
```
paddlespeech_client tts_online --server_ip 127.0.0.1 --port 8092 --protocol http --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav
```
更多信息参看: [流式 ASR](./demos/streaming_asr_server/README.md) 和 [流式 TTS](./demos/streaming_tts_server/README.md)
<a name="modulelist"></a>
## 模型列表
PaddleSpeech 支持很多主流的模型,并提供了预训练模型,详情请见[模型列表](./docs/source/released_model.md)。
@ -582,15 +628,31 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
语音合成模块最初被称为 [Parakeet](https://github.com/PaddlePaddle/Parakeet),现在与此仓库合并。如果您对该任务的学术研究感兴趣,请参阅 [TTS 研究概述](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/docs/source/tts#overview)。此外,[模型介绍](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/tts/models_introduction.md) 是了解语音合成流程的一个很好的指南。
## ⭐ 应用案例
- **[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo): 使用 PaddleSpeech 的语音合成模块生成虚拟人的声音。**
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech 示例视频](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
- **[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk): 使用 PaddleSpeech 的语音合成和语音识别从视频中克隆人声。**
<div align="center">
<img src="https://raw.githubusercontent.com/jerryuhoo/VTuberTalk/main/gui/gui.png" width = "500px" />
</div>
## 引用
要引用 PaddleSpeech 进行研究,请使用以下格式进行引用。
```text
@misc{ppspeech2021,
title={PaddleSpeech, a toolkit for audio processing based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleSpeech}},
year={2021}
@inproceedings{zhang2022paddlespeech,
title = {PaddleSpeech: An Easy-to-Use All-in-One Speech Toolkit},
author = {Hui Zhang, Tian Yuan, Junkun Chen, Xintong Li, Renjie Zheng, Yuxin Huang, Xiaojie Chen, Enlei Gong, Zeyu Chen, Xiaoguang Hu, dianhai yu, Yanjun Ma, Liang Huang},
booktitle = {Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations},
year = {2022},
publisher = {Association for Computational Linguistics},
}
@inproceedings{zheng2021fused,
@ -657,6 +719,7 @@ year={2021}
- 非常感谢 [jerryuhoo](https://github.com/jerryuhoo)/[VTuberTalk](https://github.com/jerryuhoo/VTuberTalk) 基于 PaddleSpeech 的 TTS GUI 界面和基于 ASR 制作数据集的相关代码。
此外PaddleSpeech 依赖于许多开源存储库。有关更多信息,请参阅 [references](./docs/source/reference.md)。
## License

Before

Width:  |  Height:  |  Size: 4.9 KiB

After

Width:  |  Height:  |  Size: 4.9 KiB

@ -13,6 +13,7 @@
# limitations under the License.
from .esc50 import ESC50
from .gtzan import GTZAN
from .hey_snips import HeySnips
from .rirs_noises import OpenRIRNoise
from .tess import TESS
from .urban_sound import UrbanSound8K

@ -17,6 +17,8 @@ import numpy as np
import paddle
from ..backends import load as load_audio
from ..compliance.kaldi import fbank as kaldi_fbank
from ..compliance.kaldi import mfcc as kaldi_mfcc
from ..compliance.librosa import melspectrogram
from ..compliance.librosa import mfcc
@ -24,6 +26,8 @@ feat_funcs = {
'raw': None,
'melspectrogram': melspectrogram,
'mfcc': mfcc,
'kaldi_fbank': kaldi_fbank,
'kaldi_mfcc': kaldi_mfcc,
}
@ -73,16 +77,24 @@ class AudioClassificationDataset(paddle.io.Dataset):
feat_func = feat_funcs[self.feat_type]
record = {}
record['feat'] = feat_func(
waveform, sample_rate,
**self.feat_config) if feat_func else waveform
if self.feat_type in ['kaldi_fbank', 'kaldi_mfcc']:
waveform = paddle.to_tensor(waveform).unsqueeze(0) # (C, T)
record['feat'] = feat_func(
waveform=waveform, sr=self.sample_rate, **self.feat_config)
else:
record['feat'] = feat_func(
waveform, sample_rate,
**self.feat_config) if feat_func else waveform
record['label'] = label
return record
def __getitem__(self, idx):
record = self._convert_to_record(idx)
return np.array(record['feat']).transpose(), np.array(
record['label'], dtype=np.int64)
if self.feat_type in ['kaldi_fbank', 'kaldi_mfcc']:
return self.keys[idx], record['feat'], record['label']
else:
return np.array(record['feat']).transpose(), np.array(
record['label'], dtype=np.int64)
def __len__(self):
return len(self.files)

@ -0,0 +1,74 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import json
import os
from typing import List
from typing import Tuple
from .dataset import AudioClassificationDataset
__all__ = ['HeySnips']
class HeySnips(AudioClassificationDataset):
meta_info = collections.namedtuple('META_INFO',
('key', 'label', 'duration', 'wav'))
def __init__(self,
data_dir: os.PathLike,
mode: str='train',
feat_type: str='kaldi_fbank',
sample_rate: int=16000,
**kwargs):
self.data_dir = data_dir
files, labels = self._get_data(mode)
super(HeySnips, self).__init__(
files=files,
labels=labels,
feat_type=feat_type,
sample_rate=sample_rate,
**kwargs)
def _get_meta_info(self, mode) -> List[collections.namedtuple]:
ret = []
with open(os.path.join(self.data_dir, '{}.json'.format(mode)),
'r') as f:
data = json.load(f)
for item in data:
sample = collections.OrderedDict()
if item['duration'] > 0:
sample['key'] = item['id']
sample['label'] = 0 if item['is_hotword'] == 1 else -1
sample['duration'] = item['duration']
sample['wav'] = os.path.join(self.data_dir,
item['audio_file_path'])
ret.append(self.meta_info(*sample.values()))
return ret
def _get_data(self, mode: str) -> Tuple[List[str], List[int]]:
meta_info = self._get_meta_info(mode)
files = []
labels = []
self.keys = []
self.durations = []
for sample in meta_info:
key, target, duration, wav = sample
files.append(wav)
labels.append(int(target))
self.keys.append(key)
self.durations.append(float(duration))
return files, labels

@ -19,7 +19,7 @@ from setuptools.command.install import install
from setuptools.command.test import test
# set the version here
VERSION = '0.2.1'
VERSION = '1.0.0a'
# Inspired by the example at https://pytest.org/latest/goodpractises.html

@ -16,9 +16,9 @@ import os
import unittest
import numpy as np
import paddleaudio
import soundfile as sf
import paddleaudio
from ..base import BackendTest

@ -17,11 +17,10 @@ import urllib.request
import librosa
import numpy as np
import paddle
import paddleaudio
import torch
import torchaudio
import paddleaudio
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
if not os.path.isfile(os.path.basename(wav_url)):
urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))

@ -17,11 +17,10 @@ import urllib.request
import librosa
import numpy as np
import paddle
import paddleaudio
import torch
import torchaudio
import paddleaudio
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
if not os.path.isfile(os.path.basename(wav_url)):
urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))

@ -17,11 +17,10 @@ import urllib.request
import librosa
import numpy as np
import paddle
import paddleaudio
import torch
import torchaudio
import paddleaudio
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
if not os.path.isfile(os.path.basename(wav_url)):
urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))

@ -17,7 +17,6 @@ import urllib.request
import numpy as np
import paddle
from paddleaudio import load
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'

@ -15,9 +15,9 @@ import unittest
import numpy as np
import paddle
from paddleaudio.functional.window import get_window
from .base import FeatTest
from paddleaudio.functional.window import get_window
from paddlespeech.s2t.transform.spectrogram import IStft
from paddlespeech.s2t.transform.spectrogram import Stft

@ -15,10 +15,10 @@ import unittest
import numpy as np
import paddle
import paddleaudio
import torch
import torchaudio
import paddleaudio
from .base import FeatTest

@ -16,11 +16,11 @@ import unittest
import librosa
import numpy as np
import paddle
import paddleaudio
from .base import FeatTest
from paddleaudio.functional.window import get_window
from .base import FeatTest
class TestLibrosa(FeatTest):
def initParmas(self):

@ -15,8 +15,8 @@ import unittest
import numpy as np
import paddle
import paddleaudio
from .base import FeatTest
from paddlespeech.s2t.transform.spectrogram import LogMelSpectrogram

@ -15,8 +15,8 @@ import unittest
import numpy as np
import paddle
import paddleaudio
from .base import FeatTest
from paddlespeech.s2t.transform.spectrogram import Spectrogram

@ -15,9 +15,9 @@ import unittest
import numpy as np
import paddle
from paddleaudio.functional.window import get_window
from .base import FeatTest
from paddleaudio.functional.window import get_window
from paddlespeech.s2t.transform.spectrogram import Stft

@ -10,6 +10,8 @@ The directory containes many speech applications in multi scenarios.
* metaverse - 2D AR with TTS
* punctuation_restoration - restore punctuation from raw text
* speech recogintion - recognize text of an audio file
* speech server - Server for Speech Task, e.g. ASR,TTS,CLS
* streaming asr server - receive audio stream from websocket, and recognize to transcript.
* speech translation - end to end speech translation
* story talker - book reader based on OCR and TTS
* style_fs2 - multi style control for FastSpeech2 model

@ -10,6 +10,8 @@
* 元宇宙 - 基于语音合成的 2D 增强现实。
* 标点恢复 - 通常作为语音识别的文本后处理任务,为一段无标点的纯文本添加相应的标点符号。
* 语音识别 - 识别一段音频中包含的语音文字。
* 语音服务 - 离线语音服务包括ASR、TTS、CLS等
* 流式语音识别服务 - 流式输入语音数据流识别音频中的文字
* 语音翻译 - 实时识别音频中的语言,并同时翻译成目标语言。
* 会说话的故事书 - 基于 OCR 和语音合成的会说话的故事书。
* 个性化语音合成 - 基于 FastSpeech2 模型的个性化语音合成。

@ -19,6 +19,7 @@ from fastapi import FastAPI
from fastapi import File
from fastapi import Form
from fastapi import UploadFile
from logs import LOGGER
from mysql_helpers import MySQLHelper
from operations.count import do_count_vpr
from operations.count import do_get
@ -31,8 +32,6 @@ from starlette.middleware.cors import CORSMiddleware
from starlette.requests import Request
from starlette.responses import FileResponse
from logs import LOGGER
app = FastAPI()
app.add_middleware(
CORSMiddleware,

@ -1,5 +1,5 @@
([简体中文](./README_cn.md)|English)
# Speech Verification)
# Speech Verification
## Introduction

@ -24,13 +24,13 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Command Line(Recommended)
```bash
# Chinese
paddlespeech asr --input ./zh.wav
paddlespeech asr --input ./zh.wav -v
# English
paddlespeech asr --model transformer_librispeech --lang en --input ./en.wav
paddlespeech asr --model transformer_librispeech --lang en --input ./en.wav -v
# Chinese ASR + Punctuation Restoration
paddlespeech asr --input ./zh.wav | paddlespeech text --task punc
paddlespeech asr --input ./zh.wav -v | paddlespeech text --task punc -v
```
(It doesn't matter if package `paddlespeech-ctcdecoders` is not found, this package is optional.)
(If you don't want to see the log information, you can remove "-v". Besides, it doesn't matter if package `paddlespeech-ctcdecoders` is not found, this package is optional.)
Usage:
```bash
@ -45,6 +45,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- `ckpt_path`: Model checkpoint. Use pretrained model when it is None. Default: `None`.
- `yes`: No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate. Default: `False`.
- `device`: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
- `verbose`: Show the log information.
Output:
```bash
@ -84,8 +85,12 @@ Here is a list of pretrained models released by PaddleSpeech that can be used by
| Model | Language | Sample Rate
| :--- | :---: | :---: |
| conformer_wenetspeech| zh| 16k
| transformer_librispeech| en| 16k
| conformer_wenetspeech | zh | 16k
| conformer_online_multicn | zh | 16k
| conformer_aishell | zh | 16k
| conformer_online_aishell | zh | 16k
| transformer_librispeech | en | 16k
| deepspeech2online_wenetspeech | zh | 16k
| deepspeech2offline_aishell| zh| 16k
| deepspeech2online_aishell | zh | 16k
|deepspeech2offline_librispeech|en| 16k
| deepspeech2offline_librispeech | en | 16k

@ -22,13 +22,13 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- 命令行 (推荐使用)
```bash
# 中文
paddlespeech asr --input ./zh.wav
paddlespeech asr --input ./zh.wav -v
# 英文
paddlespeech asr --model transformer_librispeech --lang en --input ./en.wav
paddlespeech asr --model transformer_librispeech --lang en --input ./en.wav -v
# 中文 + 标点恢复
paddlespeech asr --input ./zh.wav | paddlespeech text --task punc
paddlespeech asr --input ./zh.wav -v | paddlespeech text --task punc -v
```
(如果显示 `paddlespeech-ctcdecoders` 这个 python 包没有找到的 Error没有关系这个包是非必须的。)
(如果不想显示 log 信息,可以不使用"-v", 另外如果显示 `paddlespeech-ctcdecoders` 这个 python 包没有找到的 Error没有关系这个包是非必须的。)
使用方法:
```bash
@ -43,6 +43,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- `ckpt_path`:模型参数文件,若不设置则下载预训练模型使用,默认值:`None`。
- `yes`;不需要设置额外的参数,一旦设置了该参数,说明你默认同意程序的所有请求,其中包括自动转换输入音频的采样率。默认值:`False`。
- `device`:执行预测的设备,默认值:当前系统下 paddlepaddle 的默认 device。
- `verbose`: 如果使用,显示 logger 信息。
输出:
```bash
@ -82,7 +83,11 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
| 模型 | 语言 | 采样率
| :--- | :---: | :---: |
| conformer_wenetspeech | zh | 16k
| conformer_online_multicn | zh | 16k
| conformer_aishell | zh | 16k
| conformer_online_aishell | zh | 16k
| transformer_librispeech | en | 16k
| deepspeech2online_wenetspeech | zh | 16k
| deepspeech2offline_aishell| zh| 16k
| deepspeech2online_aishell | zh | 16k
| deepspeech2offline_librispeech | en | 16k

@ -86,9 +86,6 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
```
paddlespeech_client asr --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
# 流式ASR
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8091 --input ./zh.wav
```
使用帮助:

@ -0,0 +1,358 @@
([简体中文](./README_cn.md)|English)
# Speech Server
## Introduction
This demo is an implementation of starting the streaming speech service and accessing the service. It can be achieved with a single command using `paddlespeech_server` and `paddlespeech_client` or a few lines of code in python.
Streaming ASR server only support `websocket` protocol, and doesn't support `http` protocol.
## Usage
### 1. Installation
see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md).
It is recommended to use **paddlepaddle 2.2.1** or above.
You can choose one way from meduim and hard to install paddlespeech.
### 2. Prepare config File
The configuration file can be found in `conf/ws_application.yaml``conf/ws_conformer_application.yaml`.
At present, the speech tasks integrated by the model include: DeepSpeech2 and conformer.
The input of ASR client demo should be a WAV file(`.wav`), and the sample rate must be the same as the model.
Here are sample files for thisASR client demo that can be downloaded:
```bash
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav
```
### 3. Server Usage
- Command Line (Recommended)
```bash
# in PaddleSpeech/demos/streaming_asr_server start the service
paddlespeech_server start --config_file ./conf/ws_conformer_application.yaml
```
Usage:
```bash
paddlespeech_server start --help
```
Arguments:
- `config_file`: yaml file of the app, defalut: `./conf/application.yaml`
- `log_file`: log file. Default: `./log/paddlespeech.log`
Output:
```bash
[2022-04-21 15:52:18,126] [ INFO] - create the online asr engine instance
[2022-04-21 15:52:18,127] [ INFO] - paddlespeech_server set the device: cpu
[2022-04-21 15:52:18,128] [ INFO] - Load the pretrained model, tag = conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,128] [ INFO] - File /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/asr1_chunk_conformer_multi_cn_ckpt_0.2.3.model.tar.gz md5 checking...
[2022-04-21 15:52:18,727] [ INFO] - Use pretrained model stored in: /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/model.yaml
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:19,446] [ INFO] - start to create the stream conformer asr engine
[2022-04-21 15:52:19,473] [ INFO] - model name: conformer_online
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
[2022-04-21 15:52:21,731] [ INFO] - create the transformer like model success
[2022-04-21 15:52:21,733] [ INFO] - Initialize ASR server engine successfully.
INFO: Started server process [11173]
[2022-04-21 15:52:21] [INFO] [server.py:75] Started server process [11173]
INFO: Waiting for application startup.
[2022-04-21 15:52:21] [INFO] [on.py:45] Waiting for application startup.
INFO: Application startup complete.
[2022-04-21 15:52:21] [INFO] [on.py:59] Application startup complete.
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1460: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
infos = await tasks.gather(*fs, loop=self)
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1518: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
await tasks.sleep(0, loop=self)
INFO: Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
[2022-04-21 15:52:21] [INFO] [server.py:206] Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
```
- Python API
```python
# in PaddleSpeech/demos/streaming_asr_server directory
from paddlespeech.server.bin.paddlespeech_server import ServerExecutor
server_executor = ServerExecutor()
server_executor(
config_file="./conf/ws_conformer_application.yaml",
log_file="./log/paddlespeech.log")
```
Output:
```bash
[2022-04-21 15:52:18,126] [ INFO] - create the online asr engine instance
[2022-04-21 15:52:18,127] [ INFO] - paddlespeech_server set the device: cpu
[2022-04-21 15:52:18,128] [ INFO] - Load the pretrained model, tag = conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,128] [ INFO] - File /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/asr1_chunk_conformer_multi_cn_ckpt_0.2.3.model.tar.gz md5 checking...
[2022-04-21 15:52:18,727] [ INFO] - Use pretrained model stored in: /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/model.yaml
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:19,446] [ INFO] - start to create the stream conformer asr engine
[2022-04-21 15:52:19,473] [ INFO] - model name: conformer_online
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
[2022-04-21 15:52:21,731] [ INFO] - create the transformer like model success
[2022-04-21 15:52:21,733] [ INFO] - Initialize ASR server engine successfully.
INFO: Started server process [11173]
[2022-04-21 15:52:21] [INFO] [server.py:75] Started server process [11173]
INFO: Waiting for application startup.
[2022-04-21 15:52:21] [INFO] [on.py:45] Waiting for application startup.
INFO: Application startup complete.
[2022-04-21 15:52:21] [INFO] [on.py:59] Application startup complete.
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1460: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
infos = await tasks.gather(*fs, loop=self)
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1518: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
await tasks.sleep(0, loop=self)
INFO: Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
[2022-04-21 15:52:21] [INFO] [server.py:206] Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
```
### 4. ASR Client Usage
**Note:** The response time will be slightly longer when using the client for the first time
- Command Line (Recommended)
```
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
```
Usage:
```bash
paddlespeech_client asr_online --help
```
Arguments:
- `server_ip`: server ip. Default: 127.0.0.1
- `port`: server port. Default: 8090
- `input`(required): Audio file to be recognized.
- `sample_rate`: Audio ampling rate, default: 16000.
- `lang`: Language. Default: "zh_cn".
- `audio_format`: Audio format. Default: "wav".
- `punc.server_ip`: punctuation server ip. Default: None.
- `punc.server_port`: punctuation server port. Default: None.
Output:
```bash
[2022-04-21 15:59:03,904] [ INFO] - receive msg={"status": "ok", "signal": "server_ready"}
[2022-04-21 15:59:03,960] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,973] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,987] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,000] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,012] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,024] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,036] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,047] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,607] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,620] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,633] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,645] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,657] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,669] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,680] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:05,176] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,185] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,192] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,200] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,208] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,216] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,224] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,232] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,724] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,732] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,740] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,747] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,755] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,763] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,770] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:06,271] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,279] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,287] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,294] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,302] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,310] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,318] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,326] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,833] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,842] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,850] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,858] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,866] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,874] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,882] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:07,400] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,408] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,416] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,424] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,432] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,440] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,447] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,455] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,984] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:07,992] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,001] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,008] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,016] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,024] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:12,883] [ INFO] - final receive msg={'status': 'ok', 'signal': 'finished', 'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:12,884] [ INFO] - 我认为跑步最重要的就是给我带来了身体健康
[2022-04-21 15:59:12,884] [ INFO] - Response time 9.051567 s.
```
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import ASROnlineClientExecutor
asrclient_executor = ASROnlineClientExecutor()
res = asrclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
sample_rate=16000,
lang="zh_cn",
audio_format="wav")
print(res)
```
Output:
```bash
[2022-04-21 15:59:03,904] [ INFO] - receive msg={"status": "ok", "signal": "server_ready"}
[2022-04-21 15:59:03,960] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,973] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,987] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,000] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,012] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,024] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,036] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,047] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,607] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,620] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,633] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,645] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,657] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,669] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,680] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:05,176] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,185] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,192] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,200] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,208] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,216] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,224] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,232] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,724] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,732] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,740] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,747] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,755] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,763] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,770] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:06,271] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,279] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,287] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,294] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,302] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,310] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,318] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,326] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,833] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,842] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,850] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,858] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,866] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,874] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,882] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:07,400] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,408] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,416] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,424] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,432] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,440] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,447] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,455] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,984] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:07,992] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,001] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,008] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,016] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,024] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:12,883] [ INFO] - final receive msg={'status': 'ok', 'signal': 'finished', 'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
```

@ -0,0 +1,365 @@
([English](./README.md)|中文)
# 语音服务
## 介绍
这个demo是一个启动流式语音服务和访问服务的实现。 它可以通过使用`paddlespeech_server` 和 `paddlespeech_client`的单个命令或 python 的几行代码来实现。
**流式语音识别服务只支持 `weboscket` 协议,不支持 `http` 协议。**
## 使用方法
### 1. 安装
安装 PaddleSpeech 的详细过程请看 [安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md)。
推荐使用 **paddlepaddle 2.2.1** 或以上版本。
你可以从mediumhard 两种方式中选择一种方式安装 PaddleSpeech。
### 2. 准备配置文件
流式ASR的服务启动脚本和服务测试脚本存放在 `PaddleSpeech/demos/streaming_asr_server` 目录。
下载好 `PaddleSpeech` 之后,进入到 `PaddleSpeech/demos/streaming_asr_server` 目录。
配置文件可参见该目录下 `conf/ws_application.yaml``conf/ws_conformer_application.yaml`
目前服务集成的模型有: DeepSpeech2和 conformer模型对应的配置文件如下
* DeepSpeech: `conf/ws_application.yaml`
* conformer: `conf/ws_conformer_application.yaml`
这个 ASR client 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。
可以下载此 ASR client的示例音频
```bash
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav
```
### 3. 服务端使用方法
- 命令行 (推荐使用)
```bash
# 在 PaddleSpeech/demos/streaming_asr_server 目录启动服务
paddlespeech_server start --config_file ./conf/ws_conformer_application.yaml
```
使用方法:
```bash
paddlespeech_server start --help
```
参数:
- `config_file`: 服务的配置文件,默认: `./conf/application.yaml`
- `log_file`: log 文件. 默认:`./log/paddlespeech.log`
输出:
```bash
[2022-04-21 15:52:18,126] [ INFO] - create the online asr engine instance
[2022-04-21 15:52:18,127] [ INFO] - paddlespeech_server set the device: cpu
[2022-04-21 15:52:18,128] [ INFO] - Load the pretrained model, tag = conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,128] [ INFO] - File /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/asr1_chunk_conformer_multi_cn_ckpt_0.2.3.model.tar.gz md5 checking...
[2022-04-21 15:52:18,727] [ INFO] - Use pretrained model stored in: /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/model.yaml
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:19,446] [ INFO] - start to create the stream conformer asr engine
[2022-04-21 15:52:19,473] [ INFO] - model name: conformer_online
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
[2022-04-21 15:52:21,731] [ INFO] - create the transformer like model success
[2022-04-21 15:52:21,733] [ INFO] - Initialize ASR server engine successfully.
INFO: Started server process [11173]
[2022-04-21 15:52:21] [INFO] [server.py:75] Started server process [11173]
INFO: Waiting for application startup.
[2022-04-21 15:52:21] [INFO] [on.py:45] Waiting for application startup.
INFO: Application startup complete.
[2022-04-21 15:52:21] [INFO] [on.py:59] Application startup complete.
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1460: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
infos = await tasks.gather(*fs, loop=self)
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1518: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
await tasks.sleep(0, loop=self)
INFO: Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
[2022-04-21 15:52:21] [INFO] [server.py:206] Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
```
- Python API
```python
# 在 PaddleSpeech/demos/streaming_asr_server 目录
from paddlespeech.server.bin.paddlespeech_server import ServerExecutor
server_executor = ServerExecutor()
server_executor(
config_file="./conf/ws_conformer_application.yaml",
log_file="./log/paddlespeech.log")
```
输出:
```bash
[2022-04-21 15:52:18,126] [ INFO] - create the online asr engine instance
[2022-04-21 15:52:18,127] [ INFO] - paddlespeech_server set the device: cpu
[2022-04-21 15:52:18,128] [ INFO] - Load the pretrained model, tag = conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,128] [ INFO] - File /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/asr1_chunk_conformer_multi_cn_ckpt_0.2.3.model.tar.gz md5 checking...
[2022-04-21 15:52:18,727] [ INFO] - Use pretrained model stored in: /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/model.yaml
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:18,727] [ INFO] - /home/users/xiongxinlei/.paddlespeech/models/conformer_online_multicn-zh-16k/exp/chunk_conformer/checkpoints/multi_cn.pdparams
[2022-04-21 15:52:19,446] [ INFO] - start to create the stream conformer asr engine
[2022-04-21 15:52:19,473] [ INFO] - model name: conformer_online
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
set kaiming_uniform
[2022-04-21 15:52:21,731] [ INFO] - create the transformer like model success
[2022-04-21 15:52:21,733] [ INFO] - Initialize ASR server engine successfully.
INFO: Started server process [11173]
[2022-04-21 15:52:21] [INFO] [server.py:75] Started server process [11173]
INFO: Waiting for application startup.
[2022-04-21 15:52:21] [INFO] [on.py:45] Waiting for application startup.
INFO: Application startup complete.
[2022-04-21 15:52:21] [INFO] [on.py:59] Application startup complete.
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1460: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
infos = await tasks.gather(*fs, loop=self)
/home/users/xiongxinlei/.conda/envs/paddlespeech/lib/python3.9/asyncio/base_events.py:1518: DeprecationWarning: The loop argument is deprecated since Python 3.8, and scheduled for removal in Python 3.10.
await tasks.sleep(0, loop=self)
INFO: Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
[2022-04-21 15:52:21] [INFO] [server.py:206] Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit)
```
### 4. ASR 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
```
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
```
使用帮助:
```bash
paddlespeech_client asr_online --help
```
参数:
- `server_ip`: 服务端ip地址默认: 127.0.0.1。
- `port`: 服务端口,默认: 8090。
- `input`(必须输入): 用于识别的音频文件。
- `sample_rate`: 音频采样率默认值16000。
- `lang`: 模型语言默认值zh_cn。
- `audio_format`: 音频格式默认值wav。
- `punc.server_ip` 标点预测服务的ip。默认是None。
- `punc.server_port` 标点预测服务的端口port。默认是None。
输出:
```bash
[2022-04-21 15:59:03,904] [ INFO] - receive msg={"status": "ok", "signal": "server_ready"}
[2022-04-21 15:59:03,960] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,973] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,987] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,000] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,012] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,024] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,036] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,047] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,607] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,620] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,633] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,645] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,657] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,669] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,680] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:05,176] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,185] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,192] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,200] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,208] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,216] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,224] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,232] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,724] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,732] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,740] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,747] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,755] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,763] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,770] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:06,271] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,279] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,287] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,294] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,302] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,310] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,318] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,326] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,833] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,842] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,850] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,858] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,866] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,874] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,882] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:07,400] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,408] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,416] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,424] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,432] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,440] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,447] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,455] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,984] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:07,992] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,001] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,008] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,016] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,024] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:12,883] [ INFO] - final receive msg={'status': 'ok', 'signal': 'finished', 'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:12,884] [ INFO] - 我认为跑步最重要的就是给我带来了身体健康
[2022-04-21 15:59:12,884] [ INFO] - Response time 9.051567 s.
```
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import ASROnlineClientExecutor
asrclient_executor = ASROnlineClientExecutor()
res = asrclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
sample_rate=16000,
lang="zh_cn",
audio_format="wav")
print(res)
```
输出:
```bash
[2022-04-21 15:59:03,904] [ INFO] - receive msg={"status": "ok", "signal": "server_ready"}
[2022-04-21 15:59:03,960] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,973] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:03,987] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,000] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,012] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,024] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,036] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,047] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,607] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,620] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,633] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,645] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,657] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,669] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:04,680] [ INFO] - receive msg={'asr_results': ''}
[2022-04-21 15:59:05,176] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,185] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,192] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,200] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,208] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,216] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,224] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,232] [ INFO] - receive msg={'asr_results': '我认为跑'}
[2022-04-21 15:59:05,724] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,732] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,740] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,747] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,755] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,763] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:05,770] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的'}
[2022-04-21 15:59:06,271] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,279] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,287] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,294] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,302] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,310] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,318] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,326] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是'}
[2022-04-21 15:59:06,833] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,842] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,850] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,858] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,866] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,874] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:06,882] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给'}
[2022-04-21 15:59:07,400] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,408] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,416] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,424] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,432] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,440] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,447] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,455] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了'}
[2022-04-21 15:59:07,984] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:07,992] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,001] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,008] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,016] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:08,024] [ INFO] - receive msg={'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
[2022-04-21 15:59:12,883] [ INFO] - final receive msg={'status': 'ok', 'signal': 'finished', 'asr_results': '我认为跑步最重要的就是给我带来了身体健康'}
```

@ -0,0 +1,45 @@
# This is the parameter configuration file for PaddleSpeech Serving.
#################################################################################
# SERVER SETTING #
#################################################################################
host: 0.0.0.0
port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_online']
# protocol = ['websocket'] (only one can be selected).
# websocket only support online engine type.
protocol: 'websocket'
engine_list: ['asr_online']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: online #######################
asr_online:
model_type: 'conformer_online_multicn'
am_model: # the pdmodel file of am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
sample_rate: 16000
cfg_path:
decode_method:
force_yes: True
device: # cpu or gpu:id
am_predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config
chunk_buffer_conf:
window_n: 7 # frame
shift_n: 4 # frame
window_ms: 25 # ms
shift_ms: 10 # ms
sample_rate: 16000
sample_width: 2

@ -0,0 +1,47 @@
# This is the parameter configuration file for PaddleSpeech Serving.
#################################################################################
# SERVER SETTING #
#################################################################################
host: 0.0.0.0
port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_online']
# protocol = ['websocket'] (only one can be selected).
# websocket only support online engine type.
protocol: 'websocket'
engine_list: ['asr_online']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: online #######################
asr_online:
model_type: 'deepspeech2online_aishell'
am_model: # the pdmodel file of am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
sample_rate: 16000
cfg_path:
decode_method:
force_yes: True
am_predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config
chunk_buffer_conf:
frame_duration_ms: 80
shift_ms: 40
sample_rate: 16000
sample_width: 2
window_n: 7 # frame
shift_n: 4 # frame
window_ms: 20 # ms
shift_ms: 10 # ms

@ -0,0 +1,45 @@
# This is the parameter configuration file for PaddleSpeech Serving.
#################################################################################
# SERVER SETTING #
#################################################################################
host: 0.0.0.0
port: 8090
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_online']
# protocol = ['websocket'] (only one can be selected).
# websocket only support online engine type.
protocol: 'websocket'
engine_list: ['asr_online']
#################################################################################
# ENGINE CONFIG #
#################################################################################
################################### ASR #########################################
################### speech task: asr; engine_type: online #######################
asr_online:
model_type: 'conformer_online_multicn'
am_model: # the pdmodel file of am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
sample_rate: 16000
cfg_path:
decode_method:
force_yes: True
device: # cpu or gpu:id
am_predictor_conf:
device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True
glog_info: False # True -> print glog
summary: True # False -> do not show predictor config
chunk_buffer_conf:
window_n: 7 # frame
shift_n: 4 # frame
window_ms: 25 # ms
shift_ms: 10 # ms
sample_rate: 16000
sample_width: 2

@ -0,0 +1,2 @@
# start the streaming asr service
paddlespeech_server start --config_file ./conf/ws_conformer_application.yaml

@ -0,0 +1,5 @@
# download the test wav
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav
# read the wav and pass it to service
python3 websocket_client.py --wavfile ./zh.wav

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save