在./example/csmsc/添加tts1分支

pull/2499/head
Zhixuan Lv 3 years ago committed by 吕志轩
parent 467cfd4e75
commit 887ddf700e

@ -0,0 +1,408 @@
# TransformerTTS with CSMSC
<<<<<<< HEAD
## Dataset
### Download and Extract
Download CSMSC from it's [Official Website](https://test.data-baker.com/data/index/TNtts/) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP` and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
+
=======
This example contains code used to train a Transformer model with [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html).
## Dataset
### Download and Extract
Download CSMSC from it's [Official Website](https://test.data-baker.com/data/index/TNtts/) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for Tacotron2, the durations of MFA are not needed here.
You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`.
Assume the path to the MFA result of CSMSC is `./baker_alignment_tone`.
>>>>>>> 18ee40f1 (修改)
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
<<<<<<< HEAD
- synthesize waveform from text file.
=======
- synthesize waveform from a text file.
>>>>>>> 18ee40f1 (修改)
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
<<<<<<< HEAD
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
=======
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
>>>>>>> 18ee40f1 (修改)
└── train
├── norm
├── raw
└── speech_stats.npy
```
<<<<<<< HEAD
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains the speech feature of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/speech_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, the path of speech features, speaker, and id of each utterance.
### Model Training
`./local/train.sh` calls `${BIN_DIR}/train.py`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
=======
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and the id of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
>>>>>>> 18ee40f1 (修改)
Here's the complete help message.
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU] [--phones-dict PHONES_DICT]
<<<<<<< HEAD
Train a TransformerTTS model with LJSpeech TTS dataset.
=======
Train a TransformerTTS model.
>>>>>>> 18ee40f1 (修改)
optional arguments:
-h, --help show this help message and exit
--config CONFIG TransformerTTS config file.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--phones-dict PHONES_DICT
phone vocabulary file.
```
1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
5. `--phones-dict` is the path of the phone vocabulary file.
<<<<<<< HEAD
## Synthesizing
We use [waveflow](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc0) as the neural vocoder.
Download Pretrained WaveFlow Model with residual channel equals 128 from [waveflow_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/waveflow/waveflow_ljspeech_ckpt_0.3.zip) and unzip it.
```bash
unzip waveflow_ljspeech_ckpt_0.3.zip
```
WaveFlow checkpoint contains files listed below.
```text
waveflow_ljspeech_ckpt_0.3
├── config.yaml # default config used to train waveflow
└── step-2000000.pdparams # model parameters of waveflow
```
`./local/synthesize.sh` calls `${BIN_DIR}/synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
=======
### Synthesizing
We use [parallel wavegan](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc1) as the neural vocoder.
Download pretrained parallel wavegan model from [pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip) and unzip it.
```bash
unzip pwg_baker_ckpt_0.4.zip
```
Parallel WaveGAN checkpoint contains files listed below.
```text
pwg_baker_ckpt_0.4
├── pwg_default.yaml # default config used to train parallel wavegan
├── pwg_snapshot_iter_400000.pdz # model parameters of parallel wavegan
└── pwg_stats.npy # statistics used to normalize spectrogram when training parallel wavegan
```
`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
>>>>>>> 18ee40f1 (修改)
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
<<<<<<< HEAD
usage: synthesize.py [-h] [--transformer-tts-config TRANSFORMER_TTS_CONFIG]
[--transformer-tts-checkpoint TRANSFORMER_TTS_CHECKPOINT]
[--transformer-tts-stat TRANSFORMER_TTS_STAT]
[--waveflow-config WAVEFLOW_CONFIG]
[--waveflow-checkpoint WAVEFLOW_CHECKPOINT]
[--phones-dict PHONES_DICT]
[--test-metadata TEST_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU]
Synthesize with transformer tts & waveflow.
optional arguments:
-h, --help show this help message and exit
--transformer-tts-config TRANSFORMER_TTS_CONFIG
transformer tts config file.
--transformer-tts-checkpoint TRANSFORMER_TTS_CHECKPOINT
transformer tts checkpoint to load.
--transformer-tts-stat TRANSFORMER_TTS_STAT
mean and standard deviation used to normalize
spectrogram when training transformer tts.
--voc-config WAVEFLOW_CONFIG
waveflow config file.
--voc-checkpoint WAVEFLOW_CHECKPOINT
waveflow checkpoint to load.
--phones-dict PHONES_DICT
phone vocabulary file.
--test-metadata TEST_METADATA
test metadata.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
```
`./local/synthesize_e2e.sh` calls `${BIN_DIR}/synthesize_e2e.py`, which can synthesize waveform from text file.
=======
usage: synthesize.py [-h]
[--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,tacotron2_aishell3,transformer_csmsc}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT] [--speaker_dict SPEAKER_DICT]
[--voice-cloning VOICE_CLONING]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,wavernn_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,style_melgan_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--ngpu NGPU]
[--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,tacotron2_aishell3,transformer_csmsc}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,wavernn_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,style_melgan_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--ngpu NGPU if ngpu == 0, use cpu.
--test_metadata TEST_METADATA
test metadata.
--output_dir OUTPUT_DIR
output dir.
```
`./local/synthesize_e2e.sh` calls `${BIN_DIR}/../synthesize_e2e.py`, which can synthesize waveform from text file.
>>>>>>> 18ee40f1 (修改)
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize_e2e.py [-h]
<<<<<<< HEAD
[--transformer-tts-config TRANSFORMER_TTS_CONFIG]
[--transformer-tts-checkpoint TRANSFORMER_TTS_CHECKPOINT]
[--transformer-tts-stat TRANSFORMER_TTS_STAT]
[--waveflow-config WAVEFLOW_CONFIG]
[--waveflow-checkpoint WAVEFLOW_CHECKPOINT]
[--phones-dict PHONES_DICT] [--text TEXT]
[--output-dir OUTPUT_DIR] [--ngpu NGPU]
Synthesize with transformer tts & waveflow.
optional arguments:
-h, --help show this help message and exit
--transformer-tts-config TRANSFORMER_TTS_CONFIG
transformer tts config file.
--transformer-tts-checkpoint TRANSFORMER_TTS_CHECKPOINT
transformer tts checkpoint to load.
--transformer-tts-stat TRANSFORMER_TTS_STAT
mean and standard deviation used to normalize
spectrogram when training transformer tts.
--voc-config WAVEFLOW_CONFIG
waveflow config file.
--voc-ckpt WAVEFLOW_CHECKPOINT
waveflow checkpoint to load.
--phones-dict PHONES_DICT
phone vocabulary file.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
```
1. `--transformer-tts-config`, `--transformer-tts-checkpoint`, `--transformer-tts-stat` and `--phones-dict` are arguments for transformer_tts, which correspond to the 4 files in the transformer_tts pretrained model.
2. `--waveflow-config`, `--waveflow-checkpoint` are arguments for waveflow, which correspond to the 2 files in the waveflow pretrained model.
3. `--test-metadata` should be the metadata file in the normalized subfolder of `test` in the `dump` folder.
4. `--text` is the text file, which contains sentences to synthesize.
5. `--output-dir` is the directory to save synthesized audio files.
6. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Model
Pretrained Model can be downloaded here:
- [transformer_tts_csmsc_ckpt.zip](https://pan.baidu.com/s/1-6uvjQDxS0-6c9XZPBYqBQ?pwd=jjc3)
TransformerTTS checkpoint contains files listed below.
```text
transformer_tts_csmsc_ckpt
├── default.yaml # default config used to train transformer_tts
├── phone_id_map.txt # phone vocabulary file when training transformer_tts
├── snapshot_iter_675000.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training transformer_tts
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained transformer_tts and waveflow models.
=======
[--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,transformer_csmsc}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT]
[--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--lang LANG]
[--inference_dir INFERENCE_DIR] [--ngpu NGPU]
[--text TEXT] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech,transformer_csmsc}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--spk_id SPK_ID spk id for multi speaker acoustic model
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
```
1. `--am` is acoustic model type with the format {model_name}_{dataset}
2. `--am_config`, `--am_ckpt`, `--am_stat` and `--phones_dict` are arguments for acoustic model, which correspond to the 4 files in the Tacotron2 pretrained model.
3. `--voc` is vocoder type with the format {model_name}_{dataset}
4. `--voc_config`, `--voc_ckpt`, `--voc_stat` are arguments for vocoder, which correspond to the 3 files in the parallel wavegan pretrained model.
5. `--lang` is the model language, which can be `zh` or `en`.
6. `--test_metadata` should be the metadata file in the normalized subfolder of `test` in the `dump` folder.
7. `--text` is the text file, which contains sentences to synthesize.
8. `--output_dir` is the directory to save synthesized audio files.
9. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Model
Pretrained Tacotron2 model with no silence in the edge of audios:
- [transformer_tts_csmsc_ckpt.zip](https://pan.baidu.com/s/1b-qs5mlWwb75hHprRVqQXw?pwd=jjc3 )
Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
default| 1(gpu) x 30600|0.57185|0.39614|0.14642|0.029|5.8e-05|
TransformerTTS checkpoint contains files listed below.
```text
tacotron2_csmsc_ckpt_0.2.0
├── default.yaml # default config used to train Tacotron2
├── phone_id_map.txt # phone vocabulary file when training Tacotron2
├── snapshot_iter_306000.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training Tacotron2
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained Tacotron2 and parallel wavegan models.
>>>>>>> 18ee40f1 (修改)
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
<<<<<<< HEAD
python3 ${BIN_DIR}/synthesize_e2e.py \
--transformer-tts-config=transformer_tts_csmsc_ckpt/default.yaml \
--transformer-tts-checkpoint=transformer_tts_csmsc_ckpt/snapshot_iter_1118250.pdz \
--transformer-tts-stat=transformer_tts_csmsc_ckpt/speech_stats.npy \
--voc-config=waveflow_ljspeech_ckpt_0.3/config.yaml \
--voc-ckpt=waveflow_ljspeech_ckpt_0.3/step-2000000.pdparams \
--text=${BIN_DIR}/../sentences.txt \
--output-dir=exp/default/test_e2e \
--phones-dict=transformer_tts_csmsc_ckpt/phone_id_map.txt
=======
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=transformer_csmsc \
--am_config=transformer_tts_csmsc_ckpt/default.yaml \
--am_ckpt=transformer_tts_csmsc_ckpt/snapshot_iter_30600.pdz \
--am_stat=transformer_tts_csmsc_ckpt/speech_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=exp/default/test_e2e \
--inference_dir=exp/default/inference \
--phones_dict=transformer_tts_csmsc_ckpt/phone_id_map.txt
>>>>>>> 18ee40f1 (修改)
```

@ -0,0 +1,91 @@
fs : 24000 # Hz, sample rate
n_fft : 2048 # FFT size (samples).
win_length : 1200 # Window length (samples). 46.4ms
n_shift : 300 # Hop size (samples). 11.6ms
fmin : 80 # Hz, min frequency when converting to mel
fmax : 7600 # Hz, max frequency when converting to mel
n_mels : 80 # mel bands
window: "hann" # Window function.
###########################################################
# DATA SETTING #
###########################################################
batch_size: 4
num_workers: 2
##########################################################
# TTS MODEL SETTING #
##########################################################
tts: transformertts # model architecture
model: # keyword arguments for the selected model
embed_dim: 0 # embedding dimension in encoder prenet
eprenet_conv_layers: 0 # number of conv layers in encoder prenet
# if set to 0, no encoder prenet will be used
eprenet_conv_filts: 0 # filter size of conv layers in encoder prenet
eprenet_conv_chans: 0 # number of channels of conv layers in encoder prenet
dprenet_layers: 2 # number of layers in decoder prenet
dprenet_units: 256 # number of units in decoder prenet
adim: 512 # attention dimension
aheads: 8 # number of attention heads
elayers: 6 # number of encoder layers
eunits: 1024 # number of encoder ff units
dlayers: 6 # number of decoder layers
dunits: 1024 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 1 # kernel size of position wise conv layer
postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet
use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
reduction_factor: 1 # reduction factor
init_type: xavier_uniform # initialization type
init_enc_alpha: 1.0 # initial value of alpha of encoder scaled position encoding
init_dec_alpha: 1.0 # initial value of alpha of decoder scaled position encoding
eprenet_dropout_rate: 0.0 # dropout rate for encoder prenet
dprenet_dropout_rate: 0.5 # dropout rate for decoder prenet
postnet_dropout_rate: 0.5 # dropout rate for postnet
transformer_enc_dropout_rate: 0.1 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.1 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.1 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.1 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.1 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.1 # dropout rate for transformer decoder attention layer
transformer_enc_dec_attn_dropout_rate: 0.1 # dropout rate for transformer encoder-decoder attention layer
num_heads_applied_guided_attn: 2 # number of heads to apply guided attention loss
num_layers_applied_guided_attn: 2 # number of layers to apply guided attention loss
###########################################################
# UPDATER SETTING #
###########################################################
updater:
use_masking: True # whether to apply masking for padded part in loss calculation
loss_type: L1
use_guided_attn_loss: True # whether to use guided attention loss
guided_attn_loss_sigma: 0.4 # sigma in guided attention loss
guided_attn_loss_lambda: 10.0 # lambda in guided attention loss
modules_applied_guided_attn: ["encoder-decoder"] # modules to apply guided attention loss
bce_pos_weight: 5.0 # weight of positive sample in binary cross entropy calculation
##########################################################
# OPTIMIZER & SCHEDULER SETTING #
##########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 300
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086

@ -0,0 +1,62 @@
#!/bin/bash
stage=1
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./baker_alignment_tone \
--output=durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess_new.py \
--dataset=baker\
--rootdir=~/datasets/BZNSYP/ \
--dumpdir=dump \
--dur-file=durations.txt
--config-path=${config_path} \
--num-cpu=8 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi

@ -0,0 +1,135 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
<<<<<<< HEAD
python3 ${BIN_DIR}/synthesize.py \
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
python3 ${BIN_DIR}/../synthesize.py \
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# style melgan
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
<<<<<<< HEAD
fi
=======
fi
>>>>>>> 18ee40f1 (修改)

@ -0,0 +1,160 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
<<<<<<< HEAD
--phones_dict=dump/phone_id_map.txt \
#--inference_dir=${train_output_path}/inference
=======
#--phones_dict=dump/phone_id_map.txt \
>>>>>>> 18ee40f1 (修改)
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
#--inference_dir=${train_output_path}/inference
fi
# the pretrained models haven't release now
# style melgan
# style melgan's Dygraph to Static Graph is not ready now
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt
# --inference_dir=${train_output_path}/inference
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
<<<<<<< HEAD
#--inference_dir=${train_output_path}/inference
fi
=======
# --inference_dir=${train_output_path}/inference
fi
>>>>>>> 18ee40f1 (修改)
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
<<<<<<< HEAD
--transformer-tts-config=${config_path} \
--transformer-tts-checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
--transformer-tts-stat=dump/train/speech_stats.npy \
=======
--am=transformer_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
>>>>>>> 18ee40f1 (修改)
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
<<<<<<< HEAD
#--inference_dir=${train_output_path}/inference
=======
# --inference_dir=${train_output_path}/inference
>>>>>>> 18ee40f1 (修改)
fi

@ -0,0 +1,12 @@
#!/bin/bash
config_path=$1
train_output_path=$2
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=2 \
--phones-dict=dump/phone_id_map.txt

@ -0,0 +1,13 @@
#!/bin/bash
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=transformer_tts
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}

@ -0,0 +1,37 @@
#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_403.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -50,6 +50,10 @@ model_alias = {
"paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference":
"paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
"transformer":
"paddlespeech.t2s.models.transformer_tts:TransformerTTS",
"transformer_inference":
"paddlespeech.t2s.models.transformer_tts:TransformerTTSInference",
# voc
"pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
@ -244,6 +248,8 @@ def get_am_inference(am: str='fastspeech2_csmsc',
am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
elif am_name == 'erniesat':
am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
elif am_name == 'transformer':
am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
else:
print("wrong am, please input right am!!!")

@ -107,6 +107,13 @@ def evaluate(args):
if args.voice_cloning and "spk_emb" in datum:
spk_emb = paddle.to_tensor(np.load(datum["spk_emb"]))
mel = am_inference(phone_ids, spk_emb=spk_emb)
elif am_name == 'transformer':
phone_ids = paddle.to_tensor(datum["text"])
spk_emb = None
# multi speaker
if args.voice_cloning and "spk_emb" in datum:
spk_emb = paddle.to_tensor(np.load(datum["spk_emb"]))
mel = am_inference(phone_ids, spk_emb=spk_emb)
# vocoder
wav = voc_inference(mel)
@ -136,7 +143,8 @@ def parse_args():
choices=[
'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech',
'fastspeech2_aishell3', 'fastspeech2_vctk', 'tacotron2_csmsc',
'tacotron2_ljspeech', 'tacotron2_aishell3', 'fastspeech2_mix'
'tacotron2_ljspeech', 'tacotron2_aishell3', 'fastspeech2_mix',
'transformer_csmsc'
],
help='Choose acoustic model type of tts task.')
parser.add_argument(

@ -132,6 +132,8 @@ def evaluate(args):
mel = am_inference(part_phone_ids, part_tone_ids)
elif am_name == 'tacotron2':
mel = am_inference(part_phone_ids)
elif am_name == 'transformer':
mel = am_inference(part_phone_ids)
# vocoder
wav = voc_inference(mel)
if flags == 0:
@ -165,7 +167,8 @@ def parse_args():
choices=[
'speedyspeech_csmsc', 'speedyspeech_aishell3', 'fastspeech2_csmsc',
'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_vctk',
'tacotron2_csmsc', 'tacotron2_ljspeech', 'fastspeech2_mix'
'tacotron2_csmsc', 'tacotron2_ljspeech', 'fastspeech2_mix',
'transformer_csmsc'
],
help='Choose acoustic model type of tts task.')
parser.add_argument(

@ -0,0 +1,382 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from concurrent.futures import ThreadPoolExecutor
from operator import itemgetter
from pathlib import Path
from typing import Any
from typing import Dict
from typing import List
import jsonlines
import librosa
import numpy as np
import tqdm
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.get_feats import Energy
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import Pitch
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import get_spk_id_map
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
from paddlespeech.t2s.utils import str2bool
def process_sentence(config: Dict[str, Any],
fp: Path,
sentences: Dict,
output_dir: Path,
mel_extractor=None,
pitch_extractor=None,
energy_extractor=None,
cut_sil: bool=True,
spk_emb_dir: Path=None):
utt_id = fp.stem
# for vctk
if utt_id.endswith("_mic2"):
utt_id = utt_id[:-5]
record = None
if utt_id in sentences:
# reading, resampling may occur
wav, _ = librosa.load(str(fp), sr=config.fs)
if len(wav.shape) != 1:
return record
max_value = np.abs(wav).max()
if max_value > 1.0:
wav = wav / max_value
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
assert np.abs(wav).max(
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
speaker = sentences[utt_id][2]
d_cumsum = np.pad(np.array(durations).cumsum(0), (1, 0), 'constant')
# little imprecise than use *.TextGrid directly
times = librosa.frames_to_time(
d_cumsum, sr=config.fs, hop_length=config.n_shift)
if cut_sil:
start = 0
end = d_cumsum[-1]
if phones[0] == "sil" and len(durations) > 1:
start = times[1]
durations = durations[1:]
phones = phones[1:]
if phones[-1] == 'sil' and len(durations) > 1:
end = times[-2]
durations = durations[:-1]
phones = phones[:-1]
sentences[utt_id][0] = phones
sentences[utt_id][1] = durations
start, end = librosa.time_to_samples([start, end], sr=config.fs)
wav = wav[start:end]
# extract mel feats
logmel = mel_extractor.get_log_mel_fbank(wav)
# change duration according to mel_length
compare_duration_and_mel_length(sentences, utt_id, logmel)
# utt_id may be popped in compare_duration_and_mel_length
if utt_id not in sentences:
return None
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
num_frames = logmel.shape[0]
assert sum(durations) == num_frames
mel_dir = output_dir / "data_speech"
mel_dir.mkdir(parents=True, exist_ok=True)
mel_path = mel_dir / (utt_id + "_speech.npy")
np.save(mel_path, logmel)
# extract pitch and energy
f0 = pitch_extractor.get_pitch(wav, duration=np.array(durations))
assert f0.shape[0] == len(durations)
f0_dir = output_dir / "data_pitch"
f0_dir.mkdir(parents=True, exist_ok=True)
f0_path = f0_dir / (utt_id + "_pitch.npy")
np.save(f0_path, f0)
energy = energy_extractor.get_energy(wav, duration=np.array(durations))
assert energy.shape[0] == len(durations)
energy_dir = output_dir / "data_energy"
energy_dir.mkdir(parents=True, exist_ok=True)
energy_path = energy_dir / (utt_id + "_energy.npy")
np.save(energy_path, energy)
record = {
"utt_id": utt_id,
"phones": phones,
"text_lengths": len(phones),
"speech_lengths": num_frames,
"durations": durations,
"speech": str(mel_path),
"pitch": str(f0_path),
"energy": str(energy_path),
"speaker": speaker
}
if spk_emb_dir:
if speaker in os.listdir(spk_emb_dir):
embed_name = utt_id + ".npy"
embed_path = spk_emb_dir / speaker / embed_name
if embed_path.is_file():
record["spk_emb"] = str(embed_path)
else:
return None
return record
def process_sentences(config,
fps: List[Path],
sentences: Dict,
output_dir: Path,
mel_extractor=None,
pitch_extractor=None,
energy_extractor=None,
nprocs: int=1,
cut_sil: bool=True,
spk_emb_dir: Path=None,
write_metadata_method: str='w'):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir)
if record:
results.append(record)
else:
with ThreadPoolExecutor(nprocs) as pool:
futures = []
with tqdm.tqdm(total=len(fps)) as progress:
for fp in fps:
future = pool.submit(process_sentence, config, fp,
sentences, output_dir, mel_extractor,
pitch_extractor, energy_extractor,
cut_sil, spk_emb_dir)
future.add_done_callback(lambda p: progress.update())
futures.append(future)
results = []
for ft in futures:
record = ft.result()
if record:
results.append(record)
results.sort(key=itemgetter("utt_id"))
with jsonlines.open(output_dir / "metadata.jsonl",
write_metadata_method) as writer:
for item in results:
writer.write(item)
print("Done")
def main():
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features.")
parser.add_argument(
"--dataset",
default="baker",
type=str,
help="name of dataset, should in {baker, aishell3, ljspeech, vctk} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump feature files.")
parser.add_argument(
"--dur-file", default=None, type=str, help="path to durations.txt.")
parser.add_argument("--config", type=str, help="fastspeech2 config file.")
parser.add_argument(
"--num-cpu", type=int, default=1, help="number of process.")
parser.add_argument(
"--cut-sil",
type=str2bool,
default=True,
help="whether cut sil in the edge of audio")
parser.add_argument(
"--spk_emb_dir",
default=None,
type=str,
help="directory to speaker embedding files.")
parser.add_argument(
"--write_metadata_method",
default="w",
type=str,
choices=["w", "a"],
help="How the metadata.jsonl file is written.")
args = parser.parse_args()
rootdir = Path(args.rootdir).expanduser()
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
dur_file = Path(args.dur_file).expanduser()
if args.spk_emb_dir:
spk_emb_dir = Path(args.spk_emb_dir).expanduser().resolve()
else:
spk_emb_dir = None
assert rootdir.is_dir()
assert dur_file.is_file()
with open(args.config, 'rt') as f:
config = CfgNode(yaml.safe_load(f))
sentences, speaker_set = get_phn_dur(dur_file)
merge_silence(sentences)
phone_id_map_path = dumpdir / "phone_id_map.txt"
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
get_input_token(sentences, phone_id_map_path, args.dataset)
get_spk_id_map(speaker_set, speaker_id_map_path)
if args.dataset == "baker":
wav_files = sorted(list((rootdir / "Wave").rglob("*.wav")))
# split data into 3 sections
num_train = 9800
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
elif args.dataset == "aishell3":
sub_num_dev = 5
wav_dir = rootdir / "train" / "wav"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
elif args.dataset == "ljspeech":
wav_files = sorted(list((rootdir / "wavs").rglob("*.wav")))
# split data into 3 sections
num_train = 12900
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
elif args.dataset == "vctk":
sub_num_dev = 5
wav_dir = rootdir / "wav48_silence_trimmed"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*_mic2.flac")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
else:
print("dataset should in {baker, aishell3, ljspeech, vctk} now!")
train_dump_dir = dumpdir / "train" / "raw"
train_dump_dir.mkdir(parents=True, exist_ok=True)
dev_dump_dir = dumpdir / "dev" / "raw"
dev_dump_dir.mkdir(parents=True, exist_ok=True)
test_dump_dir = dumpdir / "test" / "raw"
test_dump_dir.mkdir(parents=True, exist_ok=True)
# Extractor
mel_extractor = LogMelFBank(
sr=config.fs,
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window,
n_mels=config.n_mels,
fmin=config.fmin,
fmax=config.fmax)
pitch_extractor = Pitch(
sr=config.fs,
hop_length=config.n_shift,
f0min=config.f0min,
f0max=config.f0max)
energy_extractor = Energy(
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window)
# process for the 3 sections
if train_wav_files:
process_sentences(
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir,
write_metadata_method=args.write_metadata_method)
if dev_wav_files:
process_sentences(
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir,
write_metadata_method=args.write_metadata_method)
if test_wav_files:
process_sentences(
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
pitch_extractor=pitch_extractor,
energy_extractor=energy_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir,
write_metadata_method=args.write_metadata_method)
if __name__ == "__main__":
main()
Loading…
Cancel
Save