parent
80c219b774
commit
87650de9f1
@ -0,0 +1,170 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import soundfile as sf
|
||||
import yaml
|
||||
from yacs.config import CfgNode
|
||||
|
||||
from paddlespeech.t2s.frontend import English,Chinese
|
||||
from paddlespeech.t2s.models.transformer_tts import TransformerTTS
|
||||
from paddlespeech.t2s.models.transformer_tts import TransformerTTSInference
|
||||
from paddlespeech.t2s.models.waveflow import ConditionalWaveFlow
|
||||
from paddlespeech.t2s.modules.normalizer import ZScore
|
||||
from paddlespeech.t2s.utils import layer_tools
|
||||
from paddlespeech.t2s.exps.syn_utils import get_voc_inference2
|
||||
from paddlespeech.t2s.exps.syn_utils import get_am_inference
|
||||
|
||||
def evaluate(args, acoustic_model_config, vocoder_config):
|
||||
# dataloader has been too verbose
|
||||
logging.getLogger("DataLoader").disabled = True
|
||||
|
||||
# construct dataset for evaluation
|
||||
sentences = []
|
||||
with open(args.text, 'rt') as f:
|
||||
for line in f:
|
||||
line_list = line.strip().split()
|
||||
utt_id = line_list[0]
|
||||
sentence = " ".join(line_list[1:])
|
||||
sentences.append((utt_id, sentence))
|
||||
|
||||
with open(args.phones_dict, "r") as f:
|
||||
phn_id = [line.strip().split() for line in f.readlines()]
|
||||
|
||||
vocab_size = len(phn_id)
|
||||
|
||||
phone_id_map = {}
|
||||
for phn, id in phn_id:
|
||||
phone_id_map[phn] = int(id)
|
||||
print("vocab_size:", vocab_size)
|
||||
odim = acoustic_model_config.n_mels
|
||||
model = TransformerTTS(idim=vocab_size, odim=odim, **acoustic_model_config["model"])
|
||||
model.set_state_dict(paddle.load(args.transformer_tts_checkpoint)["main_params"])
|
||||
model.eval()
|
||||
|
||||
vocoder_checkpoint_path = args.waveflow_checkpoint[:-9] if args.waveflow_checkpoint.endswith(".pdparams") else args.waveflow_checkpoint
|
||||
vocoder = ConditionalWaveFlow.from_pretrained(vocoder_config,vocoder_checkpoint_path)
|
||||
layer_tools.recursively_remove_weight_norm(vocoder)
|
||||
vocoder.eval()
|
||||
print("model done!")
|
||||
|
||||
# vocoder = get_voc_inference2(
|
||||
# voc=args.voc,
|
||||
# voc_config=vocoder_config,
|
||||
# voc_ckpt=args.voc_ckpt,
|
||||
# voc_stat=args.voc_stat)
|
||||
|
||||
frontend = Chinese()
|
||||
print("frontend done!")
|
||||
|
||||
stat = np.load(args.transformer_tts_stat)
|
||||
mu, std = stat
|
||||
mu = paddle.to_tensor(mu)
|
||||
std = paddle.to_tensor(std)
|
||||
transformer_tts_normalizer = ZScore(mu, std)
|
||||
transformer_tts_inference = TransformerTTSInference(transformer_tts_normalizer, model)
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for utt_id, sentence in sentences:
|
||||
phones = frontend.phoneticize(sentence)
|
||||
print(sentence)
|
||||
print(phones)
|
||||
# remove start_symbol and end_symbol
|
||||
phones = phones[1:-1]
|
||||
phones = [phn for phn in phones if not phn.isspace()]
|
||||
phones = [phn if phn in phone_id_map else "," for phn in phones]
|
||||
phone_ids = [phone_id_map[phn] for phn in phones]
|
||||
print('1',phone_ids)
|
||||
with paddle.no_grad():
|
||||
tensor_phone_ids=paddle.to_tensor(phone_ids)
|
||||
mel = transformer_tts_inference(tensor_phone_ids)
|
||||
# mel shape is (T, feats) and waveflow's input shape is (batch, feats, T)
|
||||
mel = mel.unsqueeze(0).transpose([0, 2, 1])
|
||||
# wavflow's output shape is (B, T)
|
||||
wav = vocoder.infer(mel)[0]
|
||||
#wav = vocoder(mel)[0]
|
||||
sf.write(str(output_dir / (utt_id + ".wav")),wav.numpy(),samplerate=acoustic_model_config.fs)
|
||||
#sf.write(str(output_dir / (utt_id + ".wav")), wav.numpy(), samplerate=24000)
|
||||
print(f"{utt_id} done!")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Synthesize with transformer tts & waveflow.")
|
||||
parser.add_argument(
|
||||
"--transformer-tts-config",
|
||||
default="./out_put/default.yaml",
|
||||
type=str,
|
||||
help="transformer tts config file.")
|
||||
parser.add_argument(
|
||||
"--transformer-tts-checkpoint",
|
||||
default="./out_put/checkpoints/snapshot_iter_1113750.pdz",
|
||||
type=str,
|
||||
help="transformer tts checkpoint to load.")
|
||||
parser.add_argument(
|
||||
"--transformer-tts-stat",
|
||||
default="./dump/speech_stats.npy",
|
||||
type=str,
|
||||
help="mean and standard deviation used to normalize spectrogram when training transformer tts."
|
||||
)
|
||||
|
||||
|
||||
parser.add_argument(
|
||||
"--waveflow-config", default="./waveflow_ljspeech_ckpt_0.3/config.yaml", type=str, help="waveflow config file.")
|
||||
# not normalize when training waveflow
|
||||
parser.add_argument(
|
||||
"--waveflow-checkpoint", default="./waveflow_ljspeech_ckpt_0.3/step-2000000.pdparams", type=str,
|
||||
help="waveflow checkpoint to load.")
|
||||
|
||||
parser.add_argument(
|
||||
"--phones-dict", type=str, default="./dump/phone_id_map.txt", help="phone vocabulary file.")
|
||||
parser.add_argument(
|
||||
"--text",
|
||||
default="./sentences.txt",
|
||||
type=str,
|
||||
help="text to synthesize, a 'utt_id sentence' pair per line.")
|
||||
parser.add_argument("--output-dir", default="./output222", type=str, help="output dir.")
|
||||
parser.add_argument("--ngpu", type=int, default=0, help="if ngpu == 0, use cpu.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.ngpu == 0:
|
||||
paddle.set_device("cpu")
|
||||
elif args.ngpu > 0:
|
||||
paddle.set_device("gpu")
|
||||
else:
|
||||
print("ngpu should >= 0 !")
|
||||
|
||||
with open(args.transformer_tts_config) as f:
|
||||
transformer_tts_config = CfgNode(yaml.safe_load(f))
|
||||
with open(args.waveflow_config) as f:
|
||||
waveflow_config = CfgNode(yaml.safe_load(f))
|
||||
|
||||
print("========Args========")
|
||||
print(yaml.safe_dump(vars(args)))
|
||||
print("========Config========")
|
||||
print(transformer_tts_config)
|
||||
print(waveflow_config)
|
||||
|
||||
evaluate(args, transformer_tts_config, waveflow_config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue