diff --git a/demos/speech_web/speech_server/src/finetune.py b/demos/speech_web/speech_server/src/finetune.py index 8af96fded..d7a440f9a 100644 --- a/demos/speech_web/speech_server/src/finetune.py +++ b/demos/speech_web/speech_server/src/finetune.py @@ -29,6 +29,11 @@ class FineTune: self.finetune_config = os.path.join("conf/tts3_finetune.yaml") def finetune(self, input_dir, exp_dir='temp', epoch=100): + """ + use cmd follow examples/other/tts_finetune/tts3/run.sh + """ + newdir_name = "newdir" + new_dir = os.path.join(input_dir, newdir_name) mfa_dir = os.path.join(exp_dir, 'mfa_result') dump_dir = os.path.join(exp_dir, 'dump') output_dir = os.path.join(exp_dir, 'exp') @@ -36,16 +41,43 @@ class FineTune: ngpu = 1 cmd = f""" - python3 {self.PYTHONPATH}/finetune.py \ - --input_dir={input_dir} \ - --pretrained_model_dir={self.pretrained_model_dir} \ - --mfa_dir={mfa_dir} \ - --dump_dir={dump_dir} \ - --output_dir={output_dir} \ - --lang={lang} \ - --ngpu={ngpu} \ - --epoch={epoch} \ - --finetune_config={self.finetune_config} + # check oov + python3 {self.PYTHONPATH}/local/check_oov.py \ + --input_dir={input_dir} \ + --pretrained_model_dir={self.pretrained_model_dir} \ + --newdir_name={newdir_name} \ + --lang={lang} + + # get mfa result + python3 {self.PYTHONPATH}/local/get_mfa_result.py \ + --input_dir={new_dir} \ + --mfa_dir={mfa_dir} \ + --lang={lang} + + # generate durations.txt + python3 {self.PYTHONPATH}/local/generate_duration.py \ + --mfa_dir={mfa_dir} + + # extract feature + python3 {self.PYTHONPATH}/local/extract_feature.py \ + --duration_file="./durations.txt" \ + --input_dir={new_dir} \ + --dump_dir={dump_dir} \ + --pretrained_model_dir={self.pretrained_model_dir} + + # create finetune env + python3 {self.PYTHONPATH}/local/prepare_env.py \ + --pretrained_model_dir={self.pretrained_model_dir} \ + --output_dir={output_dir} + + # finetune + python3 {self.PYTHONPATH}/local/finetune.py \ + --pretrained_model_dir={self.pretrained_model_dir} \ + --dump_dir={dump_dir} \ + --output_dir={output_dir} \ + --ngpu={ngpu} \ + --epoch=100 \ + --finetune_config={self.finetune_config} """ print(cmd) diff --git a/examples/other/tts_finetune/tts3/README.md b/examples/other/tts_finetune/tts3/README.md index 55fbce9a6..ceb8e7970 100644 --- a/examples/other/tts_finetune/tts3/README.md +++ b/examples/other/tts_finetune/tts3/README.md @@ -1,20 +1,41 @@ -# Finetune your own AM based on FastSpeech2 with AISHELL-3. -This example shows how to finetune your own AM based on FastSpeech2 with AISHELL-3. We use part of csmsc's data (top 200) as finetune data in this example. The example is implemented according to this [discussion](https://github.com/PaddlePaddle/PaddleSpeech/discussions/1842). Thanks to the developer for the idea. +# Finetune your own AM based on FastSpeech2 with multi-speakers dataset. +This example shows how to finetune your own AM based on FastSpeech2 with multi-speakers dataset. For finetuning Chinese data, we use part of csmsc's data (top 200) and Fastspeech2 pretrained model with AISHELL-3. For finetuning English data, we use part of ljspeech's data (top 200) and Fastspeech2 pretrained model with VCTK. The example is implemented according to this [discussion](https://github.com/PaddlePaddle/PaddleSpeech/discussions/1842). Thanks to the developer for the idea. -We use AISHELL-3 to train a multi-speaker fastspeech2 model. You can refer [examples/aishell3/tts3](https://github.com/lym0302/PaddleSpeech/tree/develop/examples/aishell3/tts3) to train multi-speaker fastspeech2 from scratch. +For more information on training Fastspeech2 with AISHELL-3, You can refer [examples/aishell3/tts3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/tts3). For more information on training Fastspeech2 with VCTK, You can refer [examples/vctk/tts3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/tts3). -## Prepare -### Download Pretrained Fastspeech2 model -Assume the path to the model is `./pretrained_models`. Download pretrained fastspeech2 model with aishell3: [fastspeech2_aishell3_ckpt_1.1.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_aishell3_ckpt_1.1.0.zip). + +## Prepare +### Download Pretrained model +Assume the path to the model is `./pretrained_models`.
+If you want to finetune Chinese data, you need to download Fastspeech2 pretrained model with AISHELL-3: [fastspeech2_aishell3_ckpt_1.1.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_aishell3_ckpt_1.1.0.zip) for finetuning. Download HiFiGAN pretrained model with aishell3: [hifigan_aishell3_ckpt_0.2.0](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip) for synthesis. ```bash mkdir -p pretrained_models && cd pretrained_models +# pretrained fastspeech2 model wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_aishell3_ckpt_1.1.0.zip unzip fastspeech2_aishell3_ckpt_1.1.0.zip +# pretrained hifigan model +wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip +unzip hifigan_aishell3_ckpt_0.2.0.zip cd ../ ``` + + +If you want to finetune English data, you need to download Fastspeech2 pretrained model with VCTK: [fastspeech2_vctk_ckpt_1.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_vctk_ckpt_1.2.0.zip) for finetuning. Download HiFiGAN pretrained model with VCTK: [hifigan_vctk_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_vctk_ckpt_0.2.0.zip) for synthesis. + +```bash +mkdir -p pretrained_models && cd pretrained_models +# pretrained fastspeech2 model +wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_vctk_ckpt_1.2.0.zip +unzip fastspeech2_vctk_ckpt_1.2.0.zip +# pretrained hifigan model +wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_vctk_ckpt_0.2.0.zip +unzip hifigan_vctk_ckpt_0.2.0.zip +cd ../ +``` + ### Download MFA tools and pretrained model -Assume the path to the MFA tool is `./tools`. Download [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz) and pretrained MFA models with aishell3: [aishell3_model.zip](https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip). +Assume the path to the MFA tool is `./tools`. Download [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz). ```bash mkdir -p tools && cd tools @@ -22,16 +43,34 @@ mkdir -p tools && cd tools wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz tar xvf montreal-forced-aligner_linux.tar.gz cp montreal-forced-aligner/lib/libpython3.6m.so.1.0 montreal-forced-aligner/lib/libpython3.6m.so -# pretrained mfa model mkdir -p aligner && cd aligner +``` + +If you want to finetune Chinese data, you need to download pretrained MFA models with aishell3: [aishell3_model.zip](https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip) and unzip it. + +```bash +# pretrained mfa model for Chinese data wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip unzip aishell3_model.zip wget https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/simple.lexicon cd ../../ ``` +If you want to finetune English data, you need to download pretrained MFA models with vctk: [vctk_model.zip](https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/vctk_model.zip) and unzip it. + +```bash +# pretrained mfa model for Chinese data +wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/vctk_model.zip +unzip vctk_model.zip +wget https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/cmudict-0.7b +cd ../../ +``` + ### Prepare your data -Assume the path to the dataset is `./input`. This directory contains audio files (*.wav) and label file (labels.txt). The audio file is in wav format. The format of the label file is: utt_id|pinyin. Here is an example of the first 200 data of csmsc. +Assume the path to the dataset is `./input` which contains a speaker folder. Speaker folder contains audio files (*.wav) and label file (labels.txt). The format of the audio file is wav. The format of the label file is: utt_id|pronunciation.
+ +If you want to finetune Chinese data, Chinese label example: 000001|ka2 er2 pu3 pei2 wai4 sun1 wan2 hua2 ti1
+Here is an example of the first 200 data of csmsc. ```bash mkdir -p input && cd input @@ -60,7 +99,12 @@ When "Prepare" done. The structure of the current directory is listed below. │ │ ├── snapshot_iter_96400.pdz │ │ ├── speaker_id_map.txt │ │ └── speech_stats.npy -│ └── fastspeech2_aishell3_ckpt_1.1.0.zip +│ ├── fastspeech2_aishell3_ckpt_1.1.0.zip +│ ├── hifigan_aishell3_ckpt_0.2.0 +│ │ ├── default.yaml +│ │ ├── feats_stats.npy +│ │ └── snapshot_iter_2500000.pdz +│ └── hifigan_aishell3_ckpt_0.2.0.zip └── tools ├── aligner │ ├── aishell3_model @@ -75,20 +119,71 @@ When "Prepare" done. The structure of the current directory is listed below. ``` +If you want to finetune English data, English label example: LJ001-0001|Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition
+Here is an example of the first 200 data of ljspeech. + +```bash +mkdir -p input && cd input +wget https://paddlespeech.bj.bcebos.com/datasets/ljspeech_mini.zip +unzip ljspeech_mini.zip +cd ../ +``` + +When "Prepare" done. The structure of the current directory is listed below. +```text +├── input +│ ├── ljspeech_mini +│ │ ├── LJ001-0001.wav +│ │ ├── LJ001-0002.wav +│ │ ├── LJ001-0003.wav +│ │ ├── ... +│ │ ├── LJ002-0014.wav +│ │ ├── labels.txt +│ └── ljspeech_mini.zip +├── pretrained_models +│ ├── fastspeech2_vctk_ckpt_1.2.0 +│ │ ├── default.yaml +│ │ ├── energy_stats.npy +│ │ ├── phone_id_map.txt +│ │ ├── pitch_stats.npy +│ │ ├── snapshot_iter_66200.pdz +│ │ ├── speaker_id_map.txt +│ │ └── speech_stats.npy +│ ├── fastspeech2_vctk_ckpt_1.2.0.zip +│ ├── hifigan_vctk_ckpt_0.2.0 +│ │ ├── default.yaml +│ │ ├── feats_stats.npy +│ │ └── snapshot_iter_2500000.pdz +│ └── hifigan_vctk_ckpt_0.2.0.zip +└── tools + ├── aligner + │ ├── vctk_model + │ ├── vctk_model.zip + │ └── cmudict-0.7b + ├── montreal-forced-aligner + │ ├── bin + │ ├── lib + │ └── pretrained_models + └── montreal-forced-aligner_linux.tar.gz + ... + +``` + ### Set finetune.yaml -`finetune.yaml` contains some configurations for fine-tuning. You can try various options to fine better result. +`conf/finetune.yaml` contains some configurations for fine-tuning. You can try various options to fine better result. The value of frozen_layers can be change according `conf/fastspeech2_layers.txt` which is the model layer of fastspeech2. + Arguments: - - `batch_size`: finetune batch size. Default: -1, means 64 which same to pretrained model + - `batch_size`: finetune batch size which should be less than or equal to the number of training samples. Default: -1, means 64 which same to pretrained model - `learning_rate`: learning rate. Default: 0.0001 - `num_snapshots`: number of save models. Default: -1, means 5 which same to pretrained model - `frozen_layers`: frozen layers. must be a list. If you don't want to frozen any layer, set []. - ## Get Started +For Chinese data finetune, execute `./run.sh`. For English data finetune, execute `./run_en.sh`.
Run the command below to 1. **source path**. -2. finetune the model. +2. finetune the model. 3. synthesize wavs. - synthesize waveform from text file. @@ -102,76 +197,59 @@ You can choose a range of stages you want to run, or set `stage` equal to `stop- Finetune a FastSpeech2 model. ```bash -./run.sh --stage 0 --stop-stage 0 +./run.sh --stage 0 --stop-stage 5 ``` -`stage 0` of `run.sh` calls `finetune.py`, here's the complete help message. +`stage 5` of `run.sh` calls `local/finetune.py`, here's the complete help message. ```text -usage: finetune.py [-h] [--input_dir INPUT_DIR] [--pretrained_model_dir PRETRAINED_MODEL_DIR] - [--mfa_dir MFA_DIR] [--dump_dir DUMP_DIR] - [--output_dir OUTPUT_DIR] [--lang LANG] - [--ngpu NGPU] +usage: finetune.py [-h] [--pretrained_model_dir PRETRAINED_MODEL_DIR] + [--dump_dir DUMP_DIR] [--output_dir OUTPUT_DIR] [--ngpu NGPU] + [--epoch EPOCH] [--finetune_config FINETUNE_CONFIG] optional arguments: - -h, --help show this help message and exit - --input_dir INPUT_DIR - directory containing audio and label file + -h, --help Show this help message and exit --pretrained_model_dir PRETRAINED_MODEL_DIR Path to pretrained model - --mfa_dir MFA_DIR directory to save aligned files --dump_dir DUMP_DIR directory to save feature files and metadata --output_dir OUTPUT_DIR - directory to save finetune model - --lang LANG Choose input audio language, zh or en - --ngpu NGPU if ngpu=0, use cpu - --epoch EPOCH the epoch of finetune - --batch_size BATCH_SIZE - the batch size of finetune, default -1 means same as pretrained model - + Directory to save finetune model + --ngpu NGPU The number of gpu, if ngpu=0, use cpu + --epoch EPOCH The epoch of finetune + --finetune_config FINETUNE_CONFIG + Path to finetune config file ``` -1. `--input_dir` is the directory containing audio and label file. -2. `--pretrained_model_dir` is the directory incluing pretrained fastspeech2_aishell3 model. -3. `--mfa_dir` is the directory to save the results of aligning from pretrained MFA_aishell3 model. -4. `--dump_dir` is the directory including audio feature and metadata. -5. `--output_dir` is the directory to save finetune model. -6. `--lang` is the language of input audio, zh or en. -7. `--ngpu` is the number of gpu. -8. `--epoch` is the epoch of finetune. -9. `--batch_size` is the batch size of finetune. + +1. `--pretrained_model_dir` is the directory incluing pretrained fastspeech2_aishell3 model. +2. `--dump_dir` is the directory including audio feature and metadata. +3. `--output_dir` is the directory to save finetune model. +4. `--ngpu` is the number of gpu, if ngpu=0, use cpu +5. `--epoch` is the epoch of finetune. +6. `--finetune_config` is the path to finetune config file + ### Synthesizing -We use [HiFiGAN](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc5) as the neural vocoder. +To synthesize Chinese audio, We use [HiFiGAN with aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc5) as the neural vocoder. Assume the path to the hifigan model is `./pretrained_models`. Download the pretrained HiFiGAN model from [hifigan_aishell3_ckpt_0.2.0](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip) and unzip it. -```bash -cd pretrained_models -wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip -unzip hifigan_aishell3_ckpt_0.2.0.zip -cd ../ -``` +To synthesize English audio, We use [HiFiGAN with vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/voc5) as the neural vocoder. +Assume the path to the hifigan model is `./pretrained_models`. Download the pretrained HiFiGAN model from [hifigan_vctk_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_vctk_ckpt_0.2.0.zip) and unzip it. + -HiFiGAN checkpoint contains files listed below. -```text -hifigan_aishell3_ckpt_0.2.0 -├── default.yaml # default config used to train HiFiGAN -├── feats_stats.npy # statistics used to normalize spectrogram when training HiFiGAN -└── snapshot_iter_2500000.pdz # generator parameters of HiFiGAN -``` Modify `ckpt` in `run.sh` to the final model in `exp/default/checkpoints`. ```bash -./run.sh --stage 1 --stop-stage 1 +./run.sh --stage 6 --stop-stage 6 ``` -`stage 1` of `run.sh` calls `${BIN_DIR}/../synthesize_e2e.py`, which can synthesize waveform from text file. +`stage 6` of `run.sh` calls `${BIN_DIR}/../synthesize_e2e.py`, which can synthesize waveform from text file. ```text usage: synthesize_e2e.py [-h] - [--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech}] + [--am {fastspeech2_aishell3,fastspeech2_vctk}] [--am_config AM_CONFIG] [--am_ckpt AM_CKPT] [--am_stat AM_STAT] [--phones_dict PHONES_DICT] [--tones_dict TONES_DICT] [--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID] - [--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}] + [--voc {pwgan_aishell3, pwgan_vctk, hifigan_aishell3, hifigan_vctk}] [--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT] [--voc_stat VOC_STAT] [--lang LANG] [--inference_dir INFERENCE_DIR] [--ngpu NGPU] @@ -181,7 +259,7 @@ Synthesize with acoustic model & vocoder optional arguments: -h, --help show this help message and exit - --am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech} + --am {fastspeech2_aishell3, fastspeech2_vctk} Choose acoustic model type of tts task. --am_config AM_CONFIG Config of acoustic model. @@ -195,7 +273,7 @@ optional arguments: --speaker_dict SPEAKER_DICT speaker id map file. --spk_id SPK_ID spk id for multi speaker acoustic model - --voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc} + --voc {pwgan_aishell3, pwgan_vctk, hifigan_aishell3, hifigan_vctk} Choose vocoder type of tts task. --voc_config VOC_CONFIG Config of voc. @@ -210,6 +288,7 @@ optional arguments: --output_dir OUTPUT_DIR output dir. ``` + 1. `--am` is acoustic model type with the format {model_name}_{dataset} 2. `--am_config`, `--am_ckpt`, `--am_stat`, `--phones_dict` `--speaker_dict` are arguments for acoustic model, which correspond to the 5 files in the fastspeech2 pretrained model. 3. `--voc` is vocoder type with the format {model_name}_{dataset} @@ -219,7 +298,8 @@ optional arguments: 7. `--output_dir` is the directory to save synthesized audio files. 8. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu. + ### Tips -If you want to get better audio quality, you can use more audios to finetune. -More finetune results can be found on [finetune-fastspeech2-for-csmsc](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html#finetune-fastspeech2-for-csmsc). +If you want to get better audio quality, you can use more audios to finetune or change configuration parameters in `conf/finetune.yaml`.
+More finetune results can be found on [finetune-fastspeech2-for-csmsc](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html#finetune-fastspeech2-for-csmsc).
The results show the effect on csmsc_mini: Freeze encoder > Non Frozen > Freeze encoder && duration_predictor. diff --git a/examples/other/tts_finetune/tts3/conf/fastspeech2_layers.txt b/examples/other/tts_finetune/tts3/conf/fastspeech2_layers.txt new file mode 100644 index 000000000..855f36b95 --- /dev/null +++ b/examples/other/tts_finetune/tts3/conf/fastspeech2_layers.txt @@ -0,0 +1,216 @@ +epoch +iteration +main_params +main_optimizer +spk_embedding_table.weight +encoder.embed.0.weight +encoder.embed.1.alpha +encoder.encoders.0.self_attn.linear_q.weight +encoder.encoders.0.self_attn.linear_q.bias +encoder.encoders.0.self_attn.linear_k.weight +encoder.encoders.0.self_attn.linear_k.bias +encoder.encoders.0.self_attn.linear_v.weight +encoder.encoders.0.self_attn.linear_v.bias +encoder.encoders.0.self_attn.linear_out.weight +encoder.encoders.0.self_attn.linear_out.bias +encoder.encoders.0.feed_forward.w_1.weight +encoder.encoders.0.feed_forward.w_1.bias +encoder.encoders.0.feed_forward.w_2.weight +encoder.encoders.0.feed_forward.w_2.bias +encoder.encoders.0.norm1.weight +encoder.encoders.0.norm1.bias +encoder.encoders.0.norm2.weight +encoder.encoders.0.norm2.bias +encoder.encoders.1.self_attn.linear_q.weight +encoder.encoders.1.self_attn.linear_q.bias +encoder.encoders.1.self_attn.linear_k.weight +encoder.encoders.1.self_attn.linear_k.bias +encoder.encoders.1.self_attn.linear_v.weight +encoder.encoders.1.self_attn.linear_v.bias +encoder.encoders.1.self_attn.linear_out.weight +encoder.encoders.1.self_attn.linear_out.bias +encoder.encoders.1.feed_forward.w_1.weight +encoder.encoders.1.feed_forward.w_1.bias +encoder.encoders.1.feed_forward.w_2.weight +encoder.encoders.1.feed_forward.w_2.bias +encoder.encoders.1.norm1.weight +encoder.encoders.1.norm1.bias +encoder.encoders.1.norm2.weight +encoder.encoders.1.norm2.bias +encoder.encoders.2.self_attn.linear_q.weight +encoder.encoders.2.self_attn.linear_q.bias +encoder.encoders.2.self_attn.linear_k.weight +encoder.encoders.2.self_attn.linear_k.bias +encoder.encoders.2.self_attn.linear_v.weight +encoder.encoders.2.self_attn.linear_v.bias +encoder.encoders.2.self_attn.linear_out.weight +encoder.encoders.2.self_attn.linear_out.bias +encoder.encoders.2.feed_forward.w_1.weight +encoder.encoders.2.feed_forward.w_1.bias +encoder.encoders.2.feed_forward.w_2.weight +encoder.encoders.2.feed_forward.w_2.bias +encoder.encoders.2.norm1.weight +encoder.encoders.2.norm1.bias +encoder.encoders.2.norm2.weight +encoder.encoders.2.norm2.bias +encoder.encoders.3.self_attn.linear_q.weight +encoder.encoders.3.self_attn.linear_q.bias +encoder.encoders.3.self_attn.linear_k.weight +encoder.encoders.3.self_attn.linear_k.bias +encoder.encoders.3.self_attn.linear_v.weight +encoder.encoders.3.self_attn.linear_v.bias +encoder.encoders.3.self_attn.linear_out.weight +encoder.encoders.3.self_attn.linear_out.bias +encoder.encoders.3.feed_forward.w_1.weight +encoder.encoders.3.feed_forward.w_1.bias +encoder.encoders.3.feed_forward.w_2.weight +encoder.encoders.3.feed_forward.w_2.bias +encoder.encoders.3.norm1.weight +encoder.encoders.3.norm1.bias +encoder.encoders.3.norm2.weight +encoder.encoders.3.norm2.bias +encoder.after_norm.weight +encoder.after_norm.bias +spk_projection.weight +spk_projection.bias +duration_predictor.conv.0.0.weight +duration_predictor.conv.0.0.bias +duration_predictor.conv.0.2.weight +duration_predictor.conv.0.2.bias +duration_predictor.conv.1.0.weight +duration_predictor.conv.1.0.bias +duration_predictor.conv.1.2.weight +duration_predictor.conv.1.2.bias +duration_predictor.linear.weight +duration_predictor.linear.bias +pitch_predictor.conv.0.0.weight +pitch_predictor.conv.0.0.bias +pitch_predictor.conv.0.2.weight +pitch_predictor.conv.0.2.bias +pitch_predictor.conv.1.0.weight +pitch_predictor.conv.1.0.bias +pitch_predictor.conv.1.2.weight +pitch_predictor.conv.1.2.bias +pitch_predictor.conv.2.0.weight +pitch_predictor.conv.2.0.bias +pitch_predictor.conv.2.2.weight +pitch_predictor.conv.2.2.bias +pitch_predictor.conv.3.0.weight +pitch_predictor.conv.3.0.bias +pitch_predictor.conv.3.2.weight +pitch_predictor.conv.3.2.bias +pitch_predictor.conv.4.0.weight +pitch_predictor.conv.4.0.bias +pitch_predictor.conv.4.2.weight +pitch_predictor.conv.4.2.bias +pitch_predictor.linear.weight +pitch_predictor.linear.bias +pitch_embed.0.weight +pitch_embed.0.bias +energy_predictor.conv.0.0.weight +energy_predictor.conv.0.0.bias +energy_predictor.conv.0.2.weight +energy_predictor.conv.0.2.bias +energy_predictor.conv.1.0.weight +energy_predictor.conv.1.0.bias +energy_predictor.conv.1.2.weight +energy_predictor.conv.1.2.bias +energy_predictor.linear.weight +energy_predictor.linear.bias +energy_embed.0.weight +energy_embed.0.bias +decoder.embed.0.alpha +decoder.encoders.0.self_attn.linear_q.weight +decoder.encoders.0.self_attn.linear_q.bias +decoder.encoders.0.self_attn.linear_k.weight +decoder.encoders.0.self_attn.linear_k.bias +decoder.encoders.0.self_attn.linear_v.weight +decoder.encoders.0.self_attn.linear_v.bias +decoder.encoders.0.self_attn.linear_out.weight +decoder.encoders.0.self_attn.linear_out.bias +decoder.encoders.0.feed_forward.w_1.weight +decoder.encoders.0.feed_forward.w_1.bias +decoder.encoders.0.feed_forward.w_2.weight +decoder.encoders.0.feed_forward.w_2.bias +decoder.encoders.0.norm1.weight +decoder.encoders.0.norm1.bias +decoder.encoders.0.norm2.weight +decoder.encoders.0.norm2.bias +decoder.encoders.1.self_attn.linear_q.weight +decoder.encoders.1.self_attn.linear_q.bias +decoder.encoders.1.self_attn.linear_k.weight +decoder.encoders.1.self_attn.linear_k.bias +decoder.encoders.1.self_attn.linear_v.weight +decoder.encoders.1.self_attn.linear_v.bias +decoder.encoders.1.self_attn.linear_out.weight +decoder.encoders.1.self_attn.linear_out.bias +decoder.encoders.1.feed_forward.w_1.weight +decoder.encoders.1.feed_forward.w_1.bias +decoder.encoders.1.feed_forward.w_2.weight +decoder.encoders.1.feed_forward.w_2.bias +decoder.encoders.1.norm1.weight +decoder.encoders.1.norm1.bias +decoder.encoders.1.norm2.weight +decoder.encoders.1.norm2.bias +decoder.encoders.2.self_attn.linear_q.weight +decoder.encoders.2.self_attn.linear_q.bias +decoder.encoders.2.self_attn.linear_k.weight +decoder.encoders.2.self_attn.linear_k.bias +decoder.encoders.2.self_attn.linear_v.weight +decoder.encoders.2.self_attn.linear_v.bias +decoder.encoders.2.self_attn.linear_out.weight +decoder.encoders.2.self_attn.linear_out.bias +decoder.encoders.2.feed_forward.w_1.weight +decoder.encoders.2.feed_forward.w_1.bias +decoder.encoders.2.feed_forward.w_2.weight +decoder.encoders.2.feed_forward.w_2.bias +decoder.encoders.2.norm1.weight +decoder.encoders.2.norm1.bias +decoder.encoders.2.norm2.weight +decoder.encoders.2.norm2.bias +decoder.encoders.3.self_attn.linear_q.weight +decoder.encoders.3.self_attn.linear_q.bias +decoder.encoders.3.self_attn.linear_k.weight +decoder.encoders.3.self_attn.linear_k.bias +decoder.encoders.3.self_attn.linear_v.weight +decoder.encoders.3.self_attn.linear_v.bias +decoder.encoders.3.self_attn.linear_out.weight +decoder.encoders.3.self_attn.linear_out.bias +decoder.encoders.3.feed_forward.w_1.weight +decoder.encoders.3.feed_forward.w_1.bias +decoder.encoders.3.feed_forward.w_2.weight +decoder.encoders.3.feed_forward.w_2.bias +decoder.encoders.3.norm1.weight +decoder.encoders.3.norm1.bias +decoder.encoders.3.norm2.weight +decoder.encoders.3.norm2.bias +decoder.after_norm.weight +decoder.after_norm.bias +feat_out.weight +feat_out.bias +postnet.postnet.0.0.weight +postnet.postnet.0.1.weight +postnet.postnet.0.1.bias +postnet.postnet.0.1._mean +postnet.postnet.0.1._variance +postnet.postnet.1.0.weight +postnet.postnet.1.1.weight +postnet.postnet.1.1.bias +postnet.postnet.1.1._mean +postnet.postnet.1.1._variance +postnet.postnet.2.0.weight +postnet.postnet.2.1.weight +postnet.postnet.2.1.bias +postnet.postnet.2.1._mean +postnet.postnet.2.1._variance +postnet.postnet.3.0.weight +postnet.postnet.3.1.weight +postnet.postnet.3.1.bias +postnet.postnet.3.1._mean +postnet.postnet.3.1._variance +postnet.postnet.4.0.weight +postnet.postnet.4.1.weight +postnet.postnet.4.1.bias +postnet.postnet.4.1._mean +postnet.postnet.4.1._variance + diff --git a/examples/other/tts_finetune/tts3/finetune.yaml b/examples/other/tts_finetune/tts3/conf/finetune.yaml similarity index 78% rename from examples/other/tts_finetune/tts3/finetune.yaml rename to examples/other/tts_finetune/tts3/conf/finetune.yaml index abde3e3ea..7d0dd7b89 100644 --- a/examples/other/tts_finetune/tts3/finetune.yaml +++ b/examples/other/tts_finetune/tts3/conf/finetune.yaml @@ -9,4 +9,6 @@ num_snapshots: -1 # frozen_layers should be a list # if you don't need to freeze, set frozen_layers to [] +# fastspeech2 layers can be found on conf/fastspeech2_layers.txt +# example: frozen_layers: ["encoder", "duration_predictor"] frozen_layers: ["encoder"] diff --git a/examples/other/tts_finetune/tts3/finetune.py b/examples/other/tts_finetune/tts3/finetune.py deleted file mode 100644 index 207e2dbc5..000000000 --- a/examples/other/tts_finetune/tts3/finetune.py +++ /dev/null @@ -1,214 +0,0 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import argparse -import os -from pathlib import Path -from typing import List -from typing import Union - -import yaml -from local.check_oov import get_check_result -from local.extract import extract_feature -from local.label_process import get_single_label -from local.prepare_env import generate_finetune_env -from local.train import train_sp -from paddle import distributed as dist -from yacs.config import CfgNode - -from utils.gen_duration_from_textgrid import gen_duration_from_textgrid - -DICT_EN = 'tools/aligner/cmudict-0.7b' -DICT_ZH = 'tools/aligner/simple.lexicon' -MODEL_DIR_EN = 'tools/aligner/vctk_model.zip' -MODEL_DIR_ZH = 'tools/aligner/aishell3_model.zip' -MFA_PHONE_EN = 'tools/aligner/vctk_model/meta.yaml' -MFA_PHONE_ZH = 'tools/aligner/aishell3_model/meta.yaml' -MFA_PATH = 'tools/montreal-forced-aligner/bin' -os.environ['PATH'] = MFA_PATH + '/:' + os.environ['PATH'] - - -class TrainArgs(): - def __init__(self, - ngpu, - config_file, - dump_dir: Path, - output_dir: Path, - frozen_layers: List[str]): - # config: fastspeech2 config file. - self.config = str(config_file) - self.train_metadata = str(dump_dir / "train/norm/metadata.jsonl") - self.dev_metadata = str(dump_dir / "dev/norm/metadata.jsonl") - # model output dir. - self.output_dir = str(output_dir) - self.ngpu = ngpu - self.phones_dict = str(dump_dir / "phone_id_map.txt") - self.speaker_dict = str(dump_dir / "speaker_id_map.txt") - self.voice_cloning = False - # frozen layers - self.frozen_layers = frozen_layers - - -def get_mfa_result( - input_dir: Union[str, Path], - mfa_dir: Union[str, Path], - lang: str='en', ): - """get mfa result - - Args: - input_dir (Union[str, Path]): input dir including wav file and label - mfa_dir (Union[str, Path]): mfa result dir - lang (str, optional): input audio language. Defaults to 'en'. - """ - # MFA - if lang == 'en': - DICT = DICT_EN - MODEL_DIR = MODEL_DIR_EN - - elif lang == 'zh': - DICT = DICT_ZH - MODEL_DIR = MODEL_DIR_ZH - else: - print('please input right lang!!') - - CMD = 'mfa_align' + ' ' + str( - input_dir) + ' ' + DICT + ' ' + MODEL_DIR + ' ' + str(mfa_dir) - os.system(CMD) - - -if __name__ == '__main__': - # parse config and args - parser = argparse.ArgumentParser( - description="Preprocess audio and then extract features.") - - parser.add_argument( - "--input_dir", - type=str, - default="./input/baker_mini", - help="directory containing audio and label file") - - parser.add_argument( - "--pretrained_model_dir", - type=str, - default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", - help="Path to pretrained model") - - parser.add_argument( - "--mfa_dir", - type=str, - default="./mfa_result", - help="directory to save aligned files") - - parser.add_argument( - "--dump_dir", - type=str, - default="./dump", - help="directory to save feature files and metadata.") - - parser.add_argument( - "--output_dir", - type=str, - default="./exp/default/", - help="directory to save finetune model.") - - parser.add_argument( - '--lang', - type=str, - default='zh', - choices=['zh', 'en'], - help='Choose input audio language. zh or en') - - parser.add_argument( - "--ngpu", type=int, default=2, help="if ngpu=0, use cpu.") - - parser.add_argument("--epoch", type=int, default=100, help="finetune epoch") - parser.add_argument( - "--finetune_config", - type=str, - default="./finetune.yaml", - help="Path to finetune config file") - - args = parser.parse_args() - - fs = 24000 - n_shift = 300 - input_dir = Path(args.input_dir).expanduser() - mfa_dir = Path(args.mfa_dir).expanduser() - mfa_dir.mkdir(parents=True, exist_ok=True) - dump_dir = Path(args.dump_dir).expanduser() - dump_dir.mkdir(parents=True, exist_ok=True) - output_dir = Path(args.output_dir).expanduser() - output_dir.mkdir(parents=True, exist_ok=True) - pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() - - # read config - config_file = pretrained_model_dir / "default.yaml" - with open(config_file) as f: - config = CfgNode(yaml.safe_load(f)) - config.max_epoch = config.max_epoch + args.epoch - - with open(args.finetune_config) as f2: - finetune_config = CfgNode(yaml.safe_load(f2)) - config.batch_size = finetune_config.batch_size if finetune_config.batch_size > 0 else config.batch_size - config.optimizer.learning_rate = finetune_config.learning_rate if finetune_config.learning_rate > 0 else config.optimizer.learning_rate - config.num_snapshots = finetune_config.num_snapshots if finetune_config.num_snapshots > 0 else config.num_snapshots - frozen_layers = finetune_config.frozen_layers - assert type(frozen_layers) == list, "frozen_layers should be set a list." - - if args.lang == 'en': - lexicon_file = DICT_EN - mfa_phone_file = MFA_PHONE_EN - elif args.lang == 'zh': - lexicon_file = DICT_ZH - mfa_phone_file = MFA_PHONE_ZH - else: - print('please input right lang!!') - - print(f"finetune max_epoch: {config.max_epoch}") - print(f"finetune batch_size: {config.batch_size}") - print(f"finetune learning_rate: {config.optimizer.learning_rate}") - print(f"finetune num_snapshots: {config.num_snapshots}") - print(f"finetune frozen_layers: {frozen_layers}") - - am_phone_file = pretrained_model_dir / "phone_id_map.txt" - label_file = input_dir / "labels.txt" - - #check phone for mfa and am finetune - oov_words, oov_files, oov_file_words = get_check_result( - label_file, lexicon_file, mfa_phone_file, am_phone_file) - input_dir = get_single_label(label_file, oov_files, input_dir) - - # get mfa result - get_mfa_result(input_dir, mfa_dir, args.lang) - - # # generate durations.txt - duration_file = "./durations.txt" - gen_duration_from_textgrid(mfa_dir, duration_file, fs, n_shift) - - # generate phone and speaker map files - extract_feature(duration_file, config, input_dir, dump_dir, - pretrained_model_dir) - - # create finetune env - generate_finetune_env(output_dir, pretrained_model_dir) - - # create a new args for training - train_args = TrainArgs(args.ngpu, config_file, dump_dir, output_dir, - frozen_layers) - - # finetune models - # dispatch - if args.ngpu > 1: - dist.spawn(train_sp, (train_args, config), nprocs=args.ngpu) - else: - train_sp(train_args, config) diff --git a/examples/other/tts_finetune/tts3/local/check_oov.py b/examples/other/tts_finetune/tts3/local/check_oov.py index 4d6854826..9e1d3f6ed 100644 --- a/examples/other/tts_finetune/tts3/local/check_oov.py +++ b/examples/other/tts_finetune/tts3/local/check_oov.py @@ -11,17 +11,30 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import argparse +import os +import re from pathlib import Path from typing import Dict from typing import List from typing import Union +DICT_EN = 'tools/aligner/cmudict-0.7b' +DICT_ZH = 'tools/aligner/simple.lexicon' +MODEL_DIR_EN = 'tools/aligner/vctk_model.zip' +MODEL_DIR_ZH = 'tools/aligner/aishell3_model.zip' +MFA_PHONE_EN = 'tools/aligner/vctk_model/meta.yaml' +MFA_PHONE_ZH = 'tools/aligner/aishell3_model/meta.yaml' +MFA_PATH = 'tools/montreal-forced-aligner/bin' +os.environ['PATH'] = MFA_PATH + '/:' + os.environ['PATH'] + def check_phone(label_file: Union[str, Path], - pinyin_phones: Dict[str, str], + pronunciation_phones: Dict[str, str], mfa_phones: List[str], am_phones: List[str], - oov_record: str="./oov_info.txt"): + oov_record: str="./oov_info.txt", + lang: str="zh"): """Check whether the phoneme corresponding to the audio text content is in the phoneme list of the pretrained mfa model to ensure that the alignment is normal. Check whether the phoneme corresponding to the audio text content @@ -29,7 +42,7 @@ def check_phone(label_file: Union[str, Path], Args: label_file (Union[str, Path]): label file, format: utt_id|phone seq - pinyin_phones (dict): pinyin to phones map dict + pronunciation_phones (dict): pronunciation to phones map dict mfa_phones (list): the phone list of pretrained mfa model am_phones (list): the phone list of pretrained mfa model @@ -46,16 +59,21 @@ def check_phone(label_file: Union[str, Path], for line in f.readlines(): utt_id = line.split("|")[0] transcription = line.strip().split("|")[1] + transcription = re.sub( + r'[:、,;。?!,.:;"?!”’《》【】<=>{}()()#&@“”^_|…\\]', '', + transcription) + if lang == "en": + transcription = transcription.upper() flag = 0 temp_oov_words = [] for word in transcription.split(" "): - if word not in pinyin_phones.keys(): + if word not in pronunciation_phones.keys(): temp_oov_words.append(word) flag = 1 if word not in oov_words: oov_words.append(word) else: - for p in pinyin_phones[word]: + for p in pronunciation_phones[word]: if p not in mfa_phones or p not in am_phones: temp_oov_words.append(word) flag = 1 @@ -74,20 +92,20 @@ def check_phone(label_file: Union[str, Path], return oov_words, oov_files, oov_file_words -def get_pinyin_phones(lexicon_file: Union[str, Path]): - # pinyin to phones - pinyin_phones = {} +def get_pronunciation_phones(lexicon_file: Union[str, Path]): + # pronunciation to phones + pronunciation_phones = {} with open(lexicon_file, "r") as f2: for line in f2.readlines(): line_list = line.strip().split(" ") - pinyin = line_list[0] + pronunciation = line_list[0] if line_list[1] == '': phones = line_list[2:] else: phones = line_list[1:] - pinyin_phones[pinyin] = phones + pronunciation_phones[pronunciation] = phones - return pinyin_phones + return pronunciation_phones def get_mfa_phone(mfa_phone_file: Union[str, Path]): @@ -114,12 +132,109 @@ def get_am_phone(am_phone_file: Union[str, Path]): def get_check_result(label_file: Union[str, Path], - lexicon_file: Union[str, Path], - mfa_phone_file: Union[str, Path], - am_phone_file: Union[str, Path]): - pinyin_phones = get_pinyin_phones(lexicon_file) + am_phone_file: Union[str, Path], + input_dir: Union[str, Path], + newdir_name: str="newdir", + lang: str="zh"): + """Check if there is any audio in the input that contains the oov word according to label_file. + Copy audio that does not contain oov word to input_dir / newdir_name. + Generate label file and save to input_dir / newdir_name. + + + Args: + label_file (Union[str, Path]): input audio label file, format: utt|pronunciation + am_phone_file (Union[str, Path]): pretrained am model phone file + input_dir (Union[str, Path]): input dir + newdir_name (str): directory name saved after checking oov + lang (str): input audio language + """ + + if lang == 'en': + lexicon_file = DICT_EN + mfa_phone_file = MFA_PHONE_EN + elif lang == 'zh': + lexicon_file = DICT_ZH + mfa_phone_file = MFA_PHONE_ZH + else: + print('please input right lang!!') + + pronunciation_phones = get_pronunciation_phones(lexicon_file) mfa_phones = get_mfa_phone(mfa_phone_file) am_phones = get_am_phone(am_phone_file) oov_words, oov_files, oov_file_words = check_phone( - label_file, pinyin_phones, mfa_phones, am_phones) - return oov_words, oov_files, oov_file_words + label_file=label_file, + pronunciation_phones=pronunciation_phones, + mfa_phones=mfa_phones, + am_phones=am_phones, + oov_record="./oov_info.txt", + lang=lang) + + input_dir = Path(input_dir).expanduser() + new_dir = input_dir / newdir_name + new_dir.mkdir(parents=True, exist_ok=True) + with open(label_file, "r") as f: + for line in f.readlines(): + utt_id = line.split("|")[0] + if utt_id not in oov_files: + transcription = line.split("|")[1].strip() + wav_file = str(input_dir) + "/" + utt_id + ".wav" + new_wav_file = str(new_dir) + "/" + utt_id + ".wav" + os.system("cp %s %s" % (wav_file, new_wav_file)) + single_file = str(new_dir) + "/" + utt_id + ".txt" + with open(single_file, "w") as fw: + fw.write(transcription) + + +if __name__ == '__main__': + # parse config and args + parser = argparse.ArgumentParser( + description="Preprocess audio and then extract features.") + + parser.add_argument( + "--input_dir", + type=str, + default="./input/csmsc_mini", + help="directory containing audio and label file") + + parser.add_argument( + "--pretrained_model_dir", + type=str, + default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", + help="Path to pretrained model") + + parser.add_argument( + "--newdir_name", + type=str, + default="newdir", + help="directory name saved after checking oov") + + parser.add_argument( + '--lang', + type=str, + default='zh', + choices=['zh', 'en'], + help='Choose input audio language. zh or en') + + args = parser.parse_args() + + # if args.lang == 'en': + # lexicon_file = DICT_EN + # mfa_phone_file = MFA_PHONE_EN + # elif args.lang == 'zh': + # lexicon_file = DICT_ZH + # mfa_phone_file = MFA_PHONE_ZH + # else: + # print('please input right lang!!') + assert args.lang == "zh" or args.lang == "en", "please input right lang! zh or en" + + input_dir = Path(args.input_dir).expanduser() + pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() + am_phone_file = pretrained_model_dir / "phone_id_map.txt" + label_file = input_dir / "labels.txt" + + get_check_result( + label_file=label_file, + am_phone_file=am_phone_file, + input_dir=input_dir, + newdir_name=args.newdir_name, + lang=args.lang) diff --git a/examples/other/tts_finetune/tts3/local/extract.py b/examples/other/tts_finetune/tts3/local/extract_feature.py similarity index 87% rename from examples/other/tts_finetune/tts3/local/extract.py rename to examples/other/tts_finetune/tts3/local/extract_feature.py index 630b58ce3..3277db531 100644 --- a/examples/other/tts_finetune/tts3/local/extract.py +++ b/examples/other/tts_finetune/tts3/local/extract_feature.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import argparse import logging import os from operator import itemgetter @@ -20,8 +21,10 @@ from typing import Union import jsonlines import numpy as np +import yaml from sklearn.preprocessing import StandardScaler from tqdm import tqdm +from yacs.config import CfgNode from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.datasets.get_feats import Energy @@ -284,3 +287,49 @@ def extract_feature(duration_file: str, # norm normalize(speech_scaler, pitch_scaler, energy_scaler, vocab_phones, vocab_speaker, dump_dir, "test") + + +if __name__ == '__main__': + # parse config and args + parser = argparse.ArgumentParser( + description="Preprocess audio and then extract features.") + + parser.add_argument( + "--duration_file", + type=str, + default="./durations.txt", + help="duration file") + + parser.add_argument( + "--input_dir", + type=str, + default="./input/baker_mini/newdir", + help="directory containing audio and label file") + + parser.add_argument( + "--dump_dir", type=str, default="./dump", help="dump dir") + + parser.add_argument( + "--pretrained_model_dir", + type=str, + default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", + help="Path to pretrained model") + + args = parser.parse_args() + + input_dir = Path(args.input_dir).expanduser() + dump_dir = Path(args.dump_dir).expanduser() + dump_dir.mkdir(parents=True, exist_ok=True) + pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() + + # read config + config_file = pretrained_model_dir / "default.yaml" + with open(config_file) as f: + config = CfgNode(yaml.safe_load(f)) + + extract_feature( + duration_file=args.duration_file, + config=config, + input_dir=input_dir, + dump_dir=dump_dir, + pretrained_model_dir=pretrained_model_dir) diff --git a/examples/other/tts_finetune/tts3/local/train.py b/examples/other/tts_finetune/tts3/local/finetune.py similarity index 65% rename from examples/other/tts_finetune/tts3/local/train.py rename to examples/other/tts_finetune/tts3/local/finetune.py index d065ae593..496c2355b 100644 --- a/examples/other/tts_finetune/tts3/local/train.py +++ b/examples/other/tts_finetune/tts3/local/finetune.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import argparse import logging import os import shutil @@ -20,10 +21,12 @@ from typing import List import jsonlines import numpy as np import paddle +import yaml from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler +from yacs.config import CfgNode from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_multi_spk_batch_fn from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_single_spk_batch_fn @@ -38,6 +41,27 @@ from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.trainer import Trainer +class TrainArgs(): + def __init__(self, + ngpu, + config_file, + dump_dir: Path, + output_dir: Path, + frozen_layers: List[str]): + # config: fastspeech2 config file. + self.config = str(config_file) + self.train_metadata = str(dump_dir / "train/norm/metadata.jsonl") + self.dev_metadata = str(dump_dir / "dev/norm/metadata.jsonl") + # model output dir. + self.output_dir = str(output_dir) + self.ngpu = ngpu + self.phones_dict = str(dump_dir / "phone_id_map.txt") + self.speaker_dict = str(dump_dir / "speaker_id_map.txt") + self.voice_cloning = False + # frozen layers + self.frozen_layers = frozen_layers + + def freeze_layer(model, layers: List[str]): """freeze layers @@ -176,3 +200,70 @@ def train_sp(args, config): trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) trainer.run() + + +if __name__ == '__main__': + # parse config and args + parser = argparse.ArgumentParser( + description="Preprocess audio and then extract features.") + + parser.add_argument( + "--pretrained_model_dir", + type=str, + default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", + help="Path to pretrained model") + + parser.add_argument( + "--dump_dir", + type=str, + default="./dump", + help="directory to save feature files and metadata.") + + parser.add_argument( + "--output_dir", + type=str, + default="./exp/default/", + help="directory to save finetune model.") + + parser.add_argument( + "--ngpu", type=int, default=2, help="if ngpu=0, use cpu.") + + parser.add_argument("--epoch", type=int, default=100, help="finetune epoch") + parser.add_argument( + "--finetune_config", + type=str, + default="./finetune.yaml", + help="Path to finetune config file") + + args = parser.parse_args() + + dump_dir = Path(args.dump_dir).expanduser() + dump_dir.mkdir(parents=True, exist_ok=True) + output_dir = Path(args.output_dir).expanduser() + output_dir.mkdir(parents=True, exist_ok=True) + pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() + + # read config + config_file = pretrained_model_dir / "default.yaml" + with open(config_file) as f: + config = CfgNode(yaml.safe_load(f)) + config.max_epoch = config.max_epoch + args.epoch + + with open(args.finetune_config) as f2: + finetune_config = CfgNode(yaml.safe_load(f2)) + config.batch_size = finetune_config.batch_size if finetune_config.batch_size > 0 else config.batch_size + config.optimizer.learning_rate = finetune_config.learning_rate if finetune_config.learning_rate > 0 else config.optimizer.learning_rate + config.num_snapshots = finetune_config.num_snapshots if finetune_config.num_snapshots > 0 else config.num_snapshots + frozen_layers = finetune_config.frozen_layers + assert type(frozen_layers) == list, "frozen_layers should be set a list." + + # create a new args for training + train_args = TrainArgs(args.ngpu, config_file, dump_dir, output_dir, + frozen_layers) + + # finetune models + # dispatch + if args.ngpu > 1: + dist.spawn(train_sp, (train_args, config), nprocs=args.ngpu) + else: + train_sp(train_args, config) diff --git a/examples/other/tts_finetune/tts3/local/generate_duration.py b/examples/other/tts_finetune/tts3/local/generate_duration.py new file mode 100644 index 000000000..e512d4789 --- /dev/null +++ b/examples/other/tts_finetune/tts3/local/generate_duration.py @@ -0,0 +1,38 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +from pathlib import Path + +from utils.gen_duration_from_textgrid import gen_duration_from_textgrid + +if __name__ == '__main__': + # parse config and args + parser = argparse.ArgumentParser( + description="Preprocess audio and then extract features.") + + parser.add_argument( + "--mfa_dir", + type=str, + default="./mfa_result", + help="directory to save aligned files") + + args = parser.parse_args() + + fs = 24000 + n_shift = 300 + duration_file = "./durations.txt" + mfa_dir = Path(args.mfa_dir).expanduser() + mfa_dir.mkdir(parents=True, exist_ok=True) + + gen_duration_from_textgrid(mfa_dir, duration_file, fs, n_shift) diff --git a/examples/other/tts_finetune/tts3/local/get_mfa_result.py b/examples/other/tts_finetune/tts3/local/get_mfa_result.py new file mode 100644 index 000000000..f564fbfc9 --- /dev/null +++ b/examples/other/tts_finetune/tts3/local/get_mfa_result.py @@ -0,0 +1,83 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import os +from pathlib import Path +from typing import Union + +DICT_EN = 'tools/aligner/cmudict-0.7b' +DICT_ZH = 'tools/aligner/simple.lexicon' +MODEL_DIR_EN = 'tools/aligner/vctk_model.zip' +MODEL_DIR_ZH = 'tools/aligner/aishell3_model.zip' +MFA_PHONE_EN = 'tools/aligner/vctk_model/meta.yaml' +MFA_PHONE_ZH = 'tools/aligner/aishell3_model/meta.yaml' +MFA_PATH = 'tools/montreal-forced-aligner/bin' +os.environ['PATH'] = MFA_PATH + '/:' + os.environ['PATH'] + + +def get_mfa_result( + input_dir: Union[str, Path], + mfa_dir: Union[str, Path], + lang: str='en', ): + """get mfa result + + Args: + input_dir (Union[str, Path]): input dir including wav file and label + mfa_dir (Union[str, Path]): mfa result dir + lang (str, optional): input audio language. Defaults to 'en'. + """ + # MFA + if lang == 'en': + DICT = DICT_EN + MODEL_DIR = MODEL_DIR_EN + + elif lang == 'zh': + DICT = DICT_ZH + MODEL_DIR = MODEL_DIR_ZH + else: + print('please input right lang!!') + + CMD = 'mfa_align' + ' ' + str( + input_dir) + ' ' + DICT + ' ' + MODEL_DIR + ' ' + str(mfa_dir) + os.system(CMD) + + +if __name__ == '__main__': + # parse config and args + parser = argparse.ArgumentParser( + description="Preprocess audio and then extract features.") + + parser.add_argument( + "--input_dir", + type=str, + default="./input/baker_mini/newdir", + help="directory containing audio and label file") + + parser.add_argument( + "--mfa_dir", + type=str, + default="./mfa_result", + help="directory to save aligned files") + + parser.add_argument( + '--lang', + type=str, + default='zh', + choices=['zh', 'en'], + help='Choose input audio language. zh or en') + + args = parser.parse_args() + + get_mfa_result( + input_dir=args.input_dir, mfa_dir=args.mfa_dir, lang=args.lang) diff --git a/examples/other/tts_finetune/tts3/local/label_process.py b/examples/other/tts_finetune/tts3/local/label_process.py deleted file mode 100644 index 711dde4b6..000000000 --- a/examples/other/tts_finetune/tts3/local/label_process.py +++ /dev/null @@ -1,63 +0,0 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import os -from pathlib import Path -from typing import List -from typing import Union - - -def change_baker_label(baker_label_file: Union[str, Path], - out_label_file: Union[str, Path]): - """change baker label file to regular label file - - Args: - baker_label_file (Union[str, Path]): Original baker label file - out_label_file (Union[str, Path]): regular label file - """ - with open(baker_label_file) as f: - lines = f.readlines() - - with open(out_label_file, "w") as fw: - for i in range(0, len(lines), 2): - utt_id = lines[i].split()[0] - transcription = lines[i + 1].strip() - fw.write(utt_id + "|" + transcription + "\n") - - -def get_single_label(label_file: Union[str, Path], - oov_files: List[Union[str, Path]], - input_dir: Union[str, Path]): - """Divide the label file into individual files according to label_file - - Args: - label_file (str or Path): label file, format: utt_id|phones id - input_dir (Path): input dir including audios - """ - input_dir = Path(input_dir).expanduser() - new_dir = input_dir / "newdir" - new_dir.mkdir(parents=True, exist_ok=True) - - with open(label_file, "r") as f: - for line in f.readlines(): - utt_id = line.split("|")[0] - if utt_id not in oov_files: - transcription = line.split("|")[1].strip() - wav_file = str(input_dir) + "/" + utt_id + ".wav" - new_wav_file = str(new_dir) + "/" + utt_id + ".wav" - os.system("cp %s %s" % (wav_file, new_wav_file)) - single_file = str(new_dir) + "/" + utt_id + ".txt" - with open(single_file, "w") as fw: - fw.write(transcription) - - return new_dir diff --git a/examples/other/tts_finetune/tts3/local/prepare_env.py b/examples/other/tts_finetune/tts3/local/prepare_env.py index f2166ff1b..5e4f96347 100644 --- a/examples/other/tts_finetune/tts3/local/prepare_env.py +++ b/examples/other/tts_finetune/tts3/local/prepare_env.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import argparse import os from pathlib import Path @@ -33,3 +34,29 @@ def generate_finetune_env(output_dir: Path, pretrained_model_dir: Path): line = "\"time\": \"2022-08-06 07:51:53.463650\", \"path\": \"%s\", \"iteration\": %d" % ( str(output_dir / model_file), iter) f.write("{" + line + "}" + "\n") + + +if __name__ == '__main__': + # parse config and args + parser = argparse.ArgumentParser( + description="Preprocess audio and then extract features.") + + parser.add_argument( + "--pretrained_model_dir", + type=str, + default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", + help="Path to pretrained model") + + parser.add_argument( + "--output_dir", + type=str, + default="./exp/default/", + help="directory to save finetune model.") + + args = parser.parse_args() + + output_dir = Path(args.output_dir).expanduser() + output_dir.mkdir(parents=True, exist_ok=True) + pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() + + generate_finetune_env(output_dir, pretrained_model_dir) diff --git a/examples/other/tts_finetune/tts3/run.sh b/examples/other/tts_finetune/tts3/run.sh index 9c877e642..7513992d2 100755 --- a/examples/other/tts_finetune/tts3/run.sh +++ b/examples/other/tts_finetune/tts3/run.sh @@ -5,13 +5,16 @@ source path.sh input_dir=./input/csmsc_mini +newdir_name="newdir" +new_dir=${input_dir}/${newdir_name} pretrained_model_dir=./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0 +mfa_tools=./tools mfa_dir=./mfa_result dump_dir=./dump output_dir=./exp/default lang=zh ngpu=1 -finetune_config=./finetune.yaml +finetune_config=./conf/finetune.yaml ckpt=snapshot_iter_96699 @@ -26,22 +29,64 @@ stop_stage=100 # this can not be mixed use with `$1`, `$2` ... source ${MAIN_ROOT}/utils/parse_options.sh || exit 1 +# check oov if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then - # finetune - python3 finetune.py \ + echo "check oov" + python3 local/check_oov.py \ --input_dir=${input_dir} \ --pretrained_model_dir=${pretrained_model_dir} \ + --newdir_name=${newdir_name} \ + --lang=${lang} +fi + +# get mfa result +if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then + echo "get mfa result" + python3 local/get_mfa_result.py \ + --input_dir=${new_dir} \ --mfa_dir=${mfa_dir} \ + --lang=${lang} +fi + +# generate durations.txt +if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then + echo "generate durations.txt" + python3 local/generate_duration.py \ + --mfa_dir=${mfa_dir} +fi + +# extract feature +if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then + echo "extract feature" + python3 local/extract_feature.py \ + --duration_file="./durations.txt" \ + --input_dir=${new_dir} \ + --dump_dir=${dump_dir} \ + --pretrained_model_dir=${pretrained_model_dir} +fi + +# create finetune env +if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then + echo "create finetune env" + python3 local/prepare_env.py \ + --pretrained_model_dir=${pretrained_model_dir} \ + --output_dir=${output_dir} +fi + +# finetune +if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then + echo "finetune..." + python3 local/finetune.py \ + --pretrained_model_dir=${pretrained_model_dir} \ --dump_dir=${dump_dir} \ --output_dir=${output_dir} \ - --lang=${lang} \ --ngpu=${ngpu} \ --epoch=100 \ --finetune_config=${finetune_config} fi - -if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then +# synthesize e2e +if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then echo "in hifigan syn_e2e" FLAGS_allocator_strategy=naive_best_fit \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ diff --git a/examples/other/tts_finetune/tts3/run_en.sh b/examples/other/tts_finetune/tts3/run_en.sh new file mode 100755 index 000000000..12b6f8da9 --- /dev/null +++ b/examples/other/tts_finetune/tts3/run_en.sh @@ -0,0 +1,107 @@ +#!/bin/bash + +set -e +source path.sh + +input_dir=./input/ljspeech_mini +newdir_name="newdir" +new_dir=${input_dir}/${newdir_name} +pretrained_model_dir=./pretrained_models/fastspeech2_vctk_ckpt_1.2.0 +mfa_tools=./tools +mfa_dir=./mfa_result +dump_dir=./dump +output_dir=./exp/default +lang=en +ngpu=1 +finetune_config=./conf/finetune.yaml + +ckpt=snapshot_iter_66300 + +gpus=1 +CUDA_VISIBLE_DEVICES=${gpus} +stage=0 +stop_stage=100 + + +# with the following command, you can choose the stage range you want to run +# such as `./run.sh --stage 0 --stop-stage 0` +# this can not be mixed use with `$1`, `$2` ... +source ${MAIN_ROOT}/utils/parse_options.sh || exit 1 + +# check oov +if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then + echo "check oov" + python3 local/check_oov.py \ + --input_dir=${input_dir} \ + --pretrained_model_dir=${pretrained_model_dir} \ + --newdir_name=${newdir_name} \ + --lang=${lang} +fi + +# get mfa result +if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then + echo "get mfa result" + python3 local/get_mfa_result.py \ + --input_dir=${new_dir} \ + --mfa_dir=${mfa_dir} \ + --lang=${lang} +fi + +# generate durations.txt +if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then + echo "generate durations.txt" + python3 local/generate_duration.py \ + --mfa_dir=${mfa_dir} +fi + +# extract feature +if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then + echo "extract feature" + python3 local/extract_feature.py \ + --duration_file="./durations.txt" \ + --input_dir=${new_dir} \ + --dump_dir=${dump_dir} \ + --pretrained_model_dir=${pretrained_model_dir} +fi + +# create finetune env +if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then + echo "create finetune env" + python3 local/prepare_env.py \ + --pretrained_model_dir=${pretrained_model_dir} \ + --output_dir=${output_dir} +fi + +# finetune +if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then + echo "finetune..." + python3 local/finetune.py \ + --pretrained_model_dir=${pretrained_model_dir} \ + --dump_dir=${dump_dir} \ + --output_dir=${output_dir} \ + --ngpu=${ngpu} \ + --epoch=100 \ + --finetune_config=${finetune_config} +fi + +# synthesize e2e +if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then + echo "in hifigan syn_e2e" + FLAGS_allocator_strategy=naive_best_fit \ + FLAGS_fraction_of_gpu_memory_to_use=0.01 \ + python3 ${BIN_DIR}/../synthesize_e2e.py \ + --am=fastspeech2_vctk \ + --am_config=${pretrained_model_dir}/default.yaml \ + --am_ckpt=${output_dir}/checkpoints/${ckpt}.pdz \ + --am_stat=${pretrained_model_dir}/speech_stats.npy \ + --voc=hifigan_vctk \ + --voc_config=pretrained_models/hifigan_vctk_ckpt_0.2.0/default.yaml \ + --voc_ckpt=pretrained_models/hifigan_vctk_ckpt_0.2.0/snapshot_iter_2500000.pdz \ + --voc_stat=pretrained_models/hifigan_vctk_ckpt_0.2.0/feats_stats.npy \ + --lang=en \ + --text=${BIN_DIR}/../sentences_en.txt \ + --output_dir=./test_e2e/ \ + --phones_dict=${dump_dir}/phone_id_map.txt \ + --speaker_dict=${dump_dir}/speaker_id_map.txt \ + --spk_id=0 +fi