conformer batch padding mask bug fix #223
parent
b769579eaf
commit
822c0938b1
@ -0,0 +1,434 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Encoder definition."""
|
||||
import logging
|
||||
from typing import Tuple, List, Optional
|
||||
from typeguard import check_argument_types
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
from paddle.nn import initializer as I
|
||||
|
||||
from deepspeech.modules.attention import MultiHeadedAttention
|
||||
from deepspeech.modules.attention import RelPositionMultiHeadedAttention
|
||||
from deepspeech.modules.convolution import ConvolutionModule
|
||||
from deepspeech.modules.embedding import PositionalEncoding
|
||||
from deepspeech.modules.embedding import RelPositionalEncoding
|
||||
from deepspeech.modules.encoder_layer import TransformerEncoderLayer
|
||||
from deepspeech.modules.encoder_layer import ConformerEncoderLayer
|
||||
from deepspeech.modules.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from deepspeech.modules.subsampling import Conv2dSubsampling4
|
||||
from deepspeech.modules.subsampling import Conv2dSubsampling6
|
||||
from deepspeech.modules.subsampling import Conv2dSubsampling8
|
||||
from deepspeech.modules.subsampling import LinearNoSubsampling
|
||||
from deepspeech.modules.mask import make_pad_mask
|
||||
from deepspeech.modules.mask import add_optional_chunk_mask
|
||||
from deepspeech.modules.activation import get_activation
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
__all__ = ["BaseEncoder", 'TransformerEncoder', "ConformerEncoder"]
|
||||
|
||||
|
||||
class BaseEncoder(nn.Layer):
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int=256,
|
||||
attention_heads: int=4,
|
||||
linear_units: int=2048,
|
||||
num_blocks: int=6,
|
||||
dropout_rate: float=0.1,
|
||||
positional_dropout_rate: float=0.1,
|
||||
attention_dropout_rate: float=0.0,
|
||||
input_layer: str="conv2d",
|
||||
pos_enc_layer_type: str="abs_pos",
|
||||
normalize_before: bool=True,
|
||||
concat_after: bool=False,
|
||||
static_chunk_size: int=0,
|
||||
use_dynamic_chunk: bool=False,
|
||||
global_cmvn: torch.nn.Module=None,
|
||||
use_dynamic_left_chunk: bool=False, ):
|
||||
"""
|
||||
Args:
|
||||
input_size (int): input dim
|
||||
output_size (int): dimension of attention
|
||||
attention_heads (int): the number of heads of multi head attention
|
||||
linear_units (int): the hidden units number of position-wise feed
|
||||
forward
|
||||
num_blocks (int): the number of decoder blocks
|
||||
dropout_rate (float): dropout rate
|
||||
attention_dropout_rate (float): dropout rate in attention
|
||||
positional_dropout_rate (float): dropout rate after adding
|
||||
positional encoding
|
||||
input_layer (str): input layer type.
|
||||
optional [linear, conv2d, conv2d6, conv2d8]
|
||||
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
||||
opitonal [abs_pos, scaled_abs_pos, rel_pos]
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block of a layer.
|
||||
False: use layer_norm after each sub-block of a layer.
|
||||
concat_after (bool): whether to concat attention layer's input
|
||||
and output.
|
||||
True: x -> x + linear(concat(x, att(x)))
|
||||
False: x -> x + att(x)
|
||||
static_chunk_size (int): chunk size for static chunk training and
|
||||
decoding
|
||||
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
||||
training or not, You can only use fixed chunk(chunk_size > 0)
|
||||
or dyanmic chunk size(use_dynamic_chunk = True)
|
||||
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
||||
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
||||
dynamic chunk training
|
||||
"""
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
self._output_size = output_size
|
||||
|
||||
if pos_enc_layer_type == "abs_pos":
|
||||
pos_enc_class = PositionalEncoding
|
||||
elif pos_enc_layer_type == "rel_pos":
|
||||
pos_enc_class = RelPositionalEncoding
|
||||
else:
|
||||
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
|
||||
|
||||
if input_layer == "linear":
|
||||
subsampling_class = LinearNoSubsampling
|
||||
elif input_layer == "conv2d":
|
||||
subsampling_class = Conv2dSubsampling4
|
||||
elif input_layer == "conv2d6":
|
||||
subsampling_class = Conv2dSubsampling6
|
||||
elif input_layer == "conv2d8":
|
||||
subsampling_class = Conv2dSubsampling8
|
||||
else:
|
||||
raise ValueError("unknown input_layer: " + input_layer)
|
||||
|
||||
self.global_cmvn = global_cmvn
|
||||
self.embed = subsampling_class(
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
pos_enc_class(output_size, positional_dropout_rate), )
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-12)
|
||||
self.static_chunk_size = static_chunk_size
|
||||
self.use_dynamic_chunk = use_dynamic_chunk
|
||||
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
xs_lens: torch.Tensor,
|
||||
decoding_chunk_size: int=0,
|
||||
num_decoding_left_chunks: int=-1,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Embed positions in tensor.
|
||||
Args:
|
||||
xs: padded input tensor (B, L, D)
|
||||
xs_lens: input length (B)
|
||||
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||||
0: default for training, use random dynamic chunk.
|
||||
<0: for decoding, use full chunk.
|
||||
>0: for decoding, use fixed chunk size as set.
|
||||
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||
the chunk size is decoding_chunk_size.
|
||||
>=0: use num_decoding_left_chunks
|
||||
<0: use all left chunks
|
||||
Returns:
|
||||
encoder output tensor, lens and mask
|
||||
"""
|
||||
masks = ~make_pad_mask(xs_lens).unsqueeze(1) # (B, 1, L)
|
||||
if self.global_cmvn is not None:
|
||||
xs = self.global_cmvn(xs)
|
||||
xs, pos_emb, masks = self.embed(xs, masks)
|
||||
mask_pad = ~masks
|
||||
chunk_masks = add_optional_chunk_mask(
|
||||
xs, masks, self.use_dynamic_chunk, self.use_dynamic_left_chunk,
|
||||
decoding_chunk_size, self.static_chunk_size,
|
||||
num_decoding_left_chunks)
|
||||
for layer in self.encoders:
|
||||
xs, chunk_masks, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||
if self.normalize_before:
|
||||
xs = self.after_norm(xs)
|
||||
# Here we assume the mask is not changed in encoder layers, so just
|
||||
# return the masks before encoder layers, and the masks will be used
|
||||
# for cross attention with decoder later
|
||||
return xs, masks
|
||||
|
||||
def forward_chunk(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
offset: int,
|
||||
required_cache_size: int,
|
||||
subsampling_cache: Optional[torch.Tensor]=None,
|
||||
elayers_output_cache: Optional[List[torch.Tensor]]=None,
|
||||
conformer_cnn_cache: Optional[List[torch.Tensor]]=None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor], List[
|
||||
torch.Tensor]]:
|
||||
""" Forward just one chunk
|
||||
Args:
|
||||
xs (torch.Tensor): chunk input
|
||||
offset (int): current offset in encoder output time stamp
|
||||
required_cache_size (int): cache size required for next chunk
|
||||
compuation
|
||||
>=0: actual cache size
|
||||
<0: means all history cache is required
|
||||
subsampling_cache (Optional[torch.Tensor]): subsampling cache
|
||||
elayers_output_cache (Optional[List[torch.Tensor]]):
|
||||
transformer/conformer encoder layers output cache
|
||||
conformer_cnn_cache (Optional[List[torch.Tensor]]): conformer
|
||||
cnn cache
|
||||
Returns:
|
||||
torch.Tensor: output of current input xs
|
||||
torch.Tensor: subsampling cache required for next chunk computation
|
||||
List[torch.Tensor]: encoder layers output cache required for next
|
||||
chunk computation
|
||||
List[torch.Tensor]: conformer cnn cache
|
||||
"""
|
||||
assert xs.size(0) == 1
|
||||
# tmp_masks is just for interface compatibility
|
||||
tmp_masks = torch.ones(
|
||||
1, xs.size(1), device=xs.device, dtype=torch.bool)
|
||||
tmp_masks = tmp_masks.unsqueeze(1)
|
||||
if self.global_cmvn is not None:
|
||||
xs = self.global_cmvn(xs)
|
||||
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
||||
if subsampling_cache is not None:
|
||||
cache_size = subsampling_cache.size(1)
|
||||
xs = torch.cat((subsampling_cache, xs), dim=1)
|
||||
else:
|
||||
cache_size = 0
|
||||
pos_emb = self.embed.position_encoding(offset - cache_size, xs.size(1))
|
||||
if required_cache_size < 0:
|
||||
next_cache_start = 0
|
||||
elif required_cache_size == 0:
|
||||
next_cache_start = xs.size(1)
|
||||
else:
|
||||
next_cache_start = xs.size(1) - required_cache_size
|
||||
r_subsampling_cache = xs[:, next_cache_start:, :]
|
||||
# Real mask for transformer/conformer layers
|
||||
masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
|
||||
masks = masks.unsqueeze(1)
|
||||
r_elayers_output_cache = []
|
||||
r_conformer_cnn_cache = []
|
||||
for i, layer in enumerate(self.encoders):
|
||||
if elayers_output_cache is None:
|
||||
attn_cache = None
|
||||
else:
|
||||
attn_cache = elayers_output_cache[i]
|
||||
if conformer_cnn_cache is None:
|
||||
cnn_cache = None
|
||||
else:
|
||||
cnn_cache = conformer_cnn_cache[i]
|
||||
xs, _, new_cnn_cache = layer(
|
||||
xs,
|
||||
masks,
|
||||
pos_emb,
|
||||
output_cache=attn_cache,
|
||||
cnn_cache=cnn_cache)
|
||||
r_elayers_output_cache.append(xs[:, next_cache_start:, :])
|
||||
r_conformer_cnn_cache.append(new_cnn_cache)
|
||||
if self.normalize_before:
|
||||
xs = self.after_norm(xs)
|
||||
|
||||
return (xs[:, cache_size:, :], r_subsampling_cache,
|
||||
r_elayers_output_cache, r_conformer_cnn_cache)
|
||||
|
||||
def forward_chunk_by_chunk(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
decoding_chunk_size: int,
|
||||
num_decoding_left_chunks: int=-1,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
""" Forward input chunk by chunk with chunk_size like a streaming
|
||||
fashion
|
||||
Here we should pay special attention to computation cache in the
|
||||
streaming style forward chunk by chunk. Three things should be taken
|
||||
into account for computation in the current network:
|
||||
1. transformer/conformer encoder layers output cache
|
||||
2. convolution in conformer
|
||||
3. convolution in subsampling
|
||||
However, we don't implement subsampling cache for:
|
||||
1. We can control subsampling module to output the right result by
|
||||
overlapping input instead of cache left context, even though it
|
||||
wastes some computation, but subsampling only takes a very
|
||||
small fraction of computation in the whole model.
|
||||
2. Typically, there are several covolution layers with subsampling
|
||||
in subsampling module, it is tricky and complicated to do cache
|
||||
with different convolution layers with different subsampling
|
||||
rate.
|
||||
3. Currently, nn.Sequential is used to stack all the convolution
|
||||
layers in subsampling, we need to rewrite it to make it work
|
||||
with cache, which is not prefered.
|
||||
Args:
|
||||
xs (torch.Tensor): (1, max_len, dim)
|
||||
chunk_size (int): decoding chunk size
|
||||
"""
|
||||
assert decoding_chunk_size > 0
|
||||
# The model is trained by static or dynamic chunk
|
||||
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
||||
subsampling = self.embed.subsampling_rate
|
||||
context = self.embed.right_context + 1 # Add current frame
|
||||
stride = subsampling * decoding_chunk_size
|
||||
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
||||
num_frames = xs.size(1)
|
||||
subsampling_cache: Optional[torch.Tensor] = None
|
||||
elayers_output_cache: Optional[List[torch.Tensor]] = None
|
||||
conformer_cnn_cache: Optional[List[torch.Tensor]] = None
|
||||
outputs = []
|
||||
offset = 0
|
||||
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
||||
|
||||
# Feed forward overlap input step by step
|
||||
for cur in range(0, num_frames - context + 1, stride):
|
||||
end = min(cur + decoding_window, num_frames)
|
||||
chunk_xs = xs[:, cur:end, :]
|
||||
(y, subsampling_cache, elayers_output_cache,
|
||||
conformer_cnn_cache) = self.forward_chunk(
|
||||
chunk_xs, offset, required_cache_size, subsampling_cache,
|
||||
elayers_output_cache, conformer_cnn_cache)
|
||||
outputs.append(y)
|
||||
offset += y.size(1)
|
||||
ys = torch.cat(outputs, 1)
|
||||
masks = torch.ones(1, ys.size(1), device=ys.device, dtype=torch.bool)
|
||||
masks = masks.unsqueeze(1)
|
||||
return ys, masks
|
||||
|
||||
|
||||
class TransformerEncoder(BaseEncoder):
|
||||
"""Transformer encoder module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int=256,
|
||||
attention_heads: int=4,
|
||||
linear_units: int=2048,
|
||||
num_blocks: int=6,
|
||||
dropout_rate: float=0.1,
|
||||
positional_dropout_rate: float=0.1,
|
||||
attention_dropout_rate: float=0.0,
|
||||
input_layer: str="conv2d",
|
||||
pos_enc_layer_type: str="abs_pos",
|
||||
normalize_before: bool=True,
|
||||
concat_after: bool=False,
|
||||
static_chunk_size: int=0,
|
||||
use_dynamic_chunk: bool=False,
|
||||
global_cmvn: torch.nn.Module=None,
|
||||
use_dynamic_left_chunk: bool=False, ):
|
||||
""" Construct TransformerEncoder
|
||||
See Encoder for the meaning of each parameter.
|
||||
"""
|
||||
assert check_argument_types()
|
||||
super().__init__(input_size, output_size, attention_heads, linear_units,
|
||||
num_blocks, dropout_rate, positional_dropout_rate,
|
||||
attention_dropout_rate, input_layer,
|
||||
pos_enc_layer_type, normalize_before, concat_after,
|
||||
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
||||
use_dynamic_left_chunk)
|
||||
self.encoders = torch.nn.ModuleList([
|
||||
TransformerEncoderLayer(
|
||||
output_size,
|
||||
MultiHeadedAttention(attention_heads, output_size,
|
||||
attention_dropout_rate),
|
||||
PositionwiseFeedForward(output_size, linear_units,
|
||||
dropout_rate), dropout_rate,
|
||||
normalize_before, concat_after) for _ in range(num_blocks)
|
||||
])
|
||||
|
||||
|
||||
class ConformerEncoder(BaseEncoder):
|
||||
"""Conformer encoder module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int=256,
|
||||
attention_heads: int=4,
|
||||
linear_units: int=2048,
|
||||
num_blocks: int=6,
|
||||
dropout_rate: float=0.1,
|
||||
positional_dropout_rate: float=0.1,
|
||||
attention_dropout_rate: float=0.0,
|
||||
input_layer: str="conv2d",
|
||||
pos_enc_layer_type: str="rel_pos",
|
||||
normalize_before: bool=True,
|
||||
concat_after: bool=False,
|
||||
static_chunk_size: int=0,
|
||||
use_dynamic_chunk: bool=False,
|
||||
global_cmvn: torch.nn.Module=None,
|
||||
use_dynamic_left_chunk: bool=False,
|
||||
positionwise_conv_kernel_size: int=1,
|
||||
macaron_style: bool=True,
|
||||
selfattention_layer_type: str="rel_selfattn",
|
||||
activation_type: str="swish",
|
||||
use_cnn_module: bool=True,
|
||||
cnn_module_kernel: int=15,
|
||||
causal: bool=False,
|
||||
cnn_module_norm: str="batch_norm", ):
|
||||
"""Construct ConformerEncoder
|
||||
Args:
|
||||
input_size to use_dynamic_chunk, see in BaseEncoder
|
||||
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
||||
conv1d layer.
|
||||
macaron_style (bool): Whether to use macaron style for
|
||||
positionwise layer.
|
||||
selfattention_layer_type (str): Encoder attention layer type,
|
||||
the parameter has no effect now, it's just for configure
|
||||
compatibility.
|
||||
activation_type (str): Encoder activation function type.
|
||||
use_cnn_module (bool): Whether to use convolution module.
|
||||
cnn_module_kernel (int): Kernel size of convolution module.
|
||||
causal (bool): whether to use causal convolution or not.
|
||||
"""
|
||||
assert check_argument_types()
|
||||
super().__init__(input_size, output_size, attention_heads, linear_units,
|
||||
num_blocks, dropout_rate, positional_dropout_rate,
|
||||
attention_dropout_rate, input_layer,
|
||||
pos_enc_layer_type, normalize_before, concat_after,
|
||||
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
||||
use_dynamic_left_chunk)
|
||||
activation = get_activation(activation_type)
|
||||
|
||||
# self-attention module definition
|
||||
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
||||
encoder_selfattn_layer_args = (attention_heads, output_size,
|
||||
attention_dropout_rate, )
|
||||
# feed-forward module definition
|
||||
positionwise_layer = PositionwiseFeedForward
|
||||
positionwise_layer_args = (output_size, linear_units, dropout_rate,
|
||||
activation, )
|
||||
# convolution module definition
|
||||
convolution_layer = ConvolutionModule
|
||||
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
||||
cnn_module_norm, causal)
|
||||
|
||||
self.encoders = torch.nn.ModuleList([
|
||||
ConformerEncoderLayer(
|
||||
output_size,
|
||||
encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
||||
positionwise_layer(*positionwise_layer_args),
|
||||
positionwise_layer(*positionwise_layer_args)
|
||||
if macaron_style else None,
|
||||
convolution_layer(*convolution_layer_args)
|
||||
if use_cnn_module else None,
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after, ) for _ in range(num_blocks)
|
||||
])
|
Loading…
Reference in new issue