commit
77c38dd521
@ -0,0 +1,191 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Evaluation for DeepSpeech2 model."""
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import paddle
|
||||
|
||||
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
|
||||
from deepspeech.frontend.featurizer.text_featurizer import TextFeaturizer
|
||||
from deepspeech.io.collator import SpeechCollator
|
||||
from deepspeech.models.ds2 import DeepSpeech2Model
|
||||
from deepspeech.models.ds2_online import DeepSpeech2ModelOnline
|
||||
from deepspeech.training.cli import default_argument_parser
|
||||
from deepspeech.utils import mp_tools
|
||||
from deepspeech.utils.checkpoint import Checkpoint
|
||||
from deepspeech.utils.log import Log
|
||||
from deepspeech.utils.utility import print_arguments
|
||||
from deepspeech.utils.utility import UpdateConfig
|
||||
|
||||
logger = Log(__name__).getlog()
|
||||
|
||||
|
||||
class DeepSpeech2Tester_hub():
|
||||
def __init__(self, config, args):
|
||||
self.args = args
|
||||
self.config = config
|
||||
self.audio_file = args.audio_file
|
||||
self.collate_fn_test = SpeechCollator.from_config(config)
|
||||
self._text_featurizer = TextFeaturizer(
|
||||
unit_type=config.collator.unit_type, vocab_filepath=None)
|
||||
|
||||
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
|
||||
result_transcripts = self.model.decode(
|
||||
audio,
|
||||
audio_len,
|
||||
vocab_list,
|
||||
decoding_method=cfg.decoding_method,
|
||||
lang_model_path=cfg.lang_model_path,
|
||||
beam_alpha=cfg.alpha,
|
||||
beam_beta=cfg.beta,
|
||||
beam_size=cfg.beam_size,
|
||||
cutoff_prob=cfg.cutoff_prob,
|
||||
cutoff_top_n=cfg.cutoff_top_n,
|
||||
num_processes=cfg.num_proc_bsearch)
|
||||
#replace the '<space>' with ' '
|
||||
result_transcripts = [
|
||||
self._text_featurizer.detokenize(sentence)
|
||||
for sentence in result_transcripts
|
||||
]
|
||||
|
||||
return result_transcripts
|
||||
|
||||
@mp_tools.rank_zero_only
|
||||
@paddle.no_grad()
|
||||
def test(self):
|
||||
self.model.eval()
|
||||
cfg = self.config
|
||||
audio_file = self.audio_file
|
||||
collate_fn_test = self.collate_fn_test
|
||||
audio, _ = collate_fn_test.process_utterance(
|
||||
audio_file=audio_file, transcript=" ")
|
||||
audio_len = audio.shape[0]
|
||||
audio = paddle.to_tensor(audio, dtype='float32')
|
||||
audio_len = paddle.to_tensor(audio_len)
|
||||
audio = paddle.unsqueeze(audio, axis=0)
|
||||
vocab_list = collate_fn_test.vocab_list
|
||||
result_transcripts = self.compute_result_transcripts(
|
||||
audio, audio_len, vocab_list, cfg.decoding)
|
||||
logger.info("result_transcripts: " + result_transcripts[0])
|
||||
|
||||
def run_test(self):
|
||||
self.resume()
|
||||
try:
|
||||
self.test()
|
||||
except KeyboardInterrupt:
|
||||
exit(-1)
|
||||
|
||||
def setup(self):
|
||||
"""Setup the experiment.
|
||||
"""
|
||||
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
|
||||
|
||||
self.setup_output_dir()
|
||||
self.setup_checkpointer()
|
||||
|
||||
self.setup_model()
|
||||
|
||||
def setup_output_dir(self):
|
||||
"""Create a directory used for output.
|
||||
"""
|
||||
# output dir
|
||||
if self.args.output:
|
||||
output_dir = Path(self.args.output).expanduser()
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
else:
|
||||
output_dir = Path(
|
||||
self.args.checkpoint_path).expanduser().parent.parent
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.output_dir = output_dir
|
||||
|
||||
def setup_model(self):
|
||||
config = self.config.clone()
|
||||
with UpdateConfig(config):
|
||||
config.model.feat_size = self.collate_fn_test.feature_size
|
||||
config.model.dict_size = self.collate_fn_test.vocab_size
|
||||
|
||||
if self.args.model_type == 'offline':
|
||||
model = DeepSpeech2Model.from_config(config.model)
|
||||
elif self.args.model_type == 'online':
|
||||
model = DeepSpeech2ModelOnline.from_config(config.model)
|
||||
else:
|
||||
raise Exception("wrong model type")
|
||||
|
||||
self.model = model
|
||||
|
||||
def setup_checkpointer(self):
|
||||
"""Create a directory used to save checkpoints into.
|
||||
|
||||
It is "checkpoints" inside the output directory.
|
||||
"""
|
||||
# checkpoint dir
|
||||
checkpoint_dir = self.output_dir / "checkpoints"
|
||||
checkpoint_dir.mkdir(exist_ok=True)
|
||||
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
|
||||
self.checkpoint = Checkpoint(
|
||||
kbest_n=self.config.training.checkpoint.kbest_n,
|
||||
latest_n=self.config.training.checkpoint.latest_n)
|
||||
|
||||
def resume(self):
|
||||
"""Resume from the checkpoint at checkpoints in the output
|
||||
directory or load a specified checkpoint.
|
||||
"""
|
||||
params_path = self.args.checkpoint_path + ".pdparams"
|
||||
model_dict = paddle.load(params_path)
|
||||
self.model.set_state_dict(model_dict)
|
||||
|
||||
|
||||
def main_sp(config, args):
|
||||
exp = DeepSpeech2Tester_hub(config, args)
|
||||
exp.setup()
|
||||
exp.run_test()
|
||||
|
||||
|
||||
def main(config, args):
|
||||
main_sp(config, args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = default_argument_parser()
|
||||
parser.add_argument("--model_type")
|
||||
parser.add_argument("--audio_file")
|
||||
# save asr result to
|
||||
parser.add_argument(
|
||||
"--result_file", type=str, help="path of save the asr result")
|
||||
args = parser.parse_args()
|
||||
print_arguments(args, globals())
|
||||
if args.model_type is None:
|
||||
args.model_type = 'offline'
|
||||
if not os.path.isfile(args.audio_file):
|
||||
print("Please input the audio file path")
|
||||
sys.exit(-1)
|
||||
print("model_type:{}".format(args.model_type))
|
||||
|
||||
# https://yaml.org/type/float.html
|
||||
config = get_cfg_defaults(args.model_type)
|
||||
if args.config:
|
||||
config.merge_from_file(args.config)
|
||||
if args.opts:
|
||||
config.merge_from_list(args.opts)
|
||||
config.freeze()
|
||||
print(config)
|
||||
if args.dump_config:
|
||||
with open(args.dump_config, 'w') as f:
|
||||
print(config, file=f)
|
||||
|
||||
main(config, args)
|
@ -0,0 +1,36 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ $# != 4 ];then
|
||||
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
echo "using $ngpu gpus..."
|
||||
|
||||
config_path=$1
|
||||
ckpt_prefix=$2
|
||||
model_type=$3
|
||||
audio_file=$4
|
||||
|
||||
# download language model
|
||||
bash local/download_lm_ch.sh
|
||||
if [ $? -ne 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
python3 -u ${BIN_DIR}/test_hub.py \
|
||||
--nproc ${ngpu} \
|
||||
--config ${config_path} \
|
||||
--result_file ${ckpt_prefix}.rsl \
|
||||
--checkpoint_path ${ckpt_prefix} \
|
||||
--model_type ${model_type} \
|
||||
--audio_file ${audio_file}
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in evaluation!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
exit 0
|
Loading…
Reference in new issue