From 71bda2443798f3084002ca6609e47b54861f0f8b Mon Sep 17 00:00:00 2001 From: lance6716 Date: Wed, 15 Feb 2023 12:59:38 +0800 Subject: [PATCH] [TTS]Fix canton (#2924) * Update run.sh * Update README.md --- examples/canton/tts3/README.md | 42 +--------------------------------- examples/canton/tts3/run.sh | 33 -------------------------- 2 files changed, 1 insertion(+), 74 deletions(-) diff --git a/examples/canton/tts3/README.md b/examples/canton/tts3/README.md index f4acd131c..3bf4fd8ee 100644 --- a/examples/canton/tts3/README.md +++ b/examples/canton/tts3/README.md @@ -74,44 +74,4 @@ Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file tha ### Training details can refer to the script of [examples/aishell3/tts3](../../aishell3/tts3). -## Pretrained Model(Waiting========) -Pretrained FastSpeech2 model with no silence in the edge of audios: -- [fastspeech2_aishell3_ckpt_1.1.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_aishell3_ckpt_1.1.0.zip) -- [fastspeech2_conformer_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_aishell3_ckpt_0.2.0.zip) (Thanks for [@awmmmm](https://github.com/awmmmm)'s contribution) - - -FastSpeech2 checkpoint contains files listed below. - -```text -fastspeech2_aishell3_ckpt_1.1.0 -├── default.yaml # default config used to train fastspeech2 -├── energy_stats.npy # statistics used to normalize energy when training fastspeech2 -├── phone_id_map.txt # phone vocabulary file when training fastspeech2 -├── pitch_stats.npy # statistics used to normalize pitch when training fastspeech2 -├── snapshot_iter_96400.pdz # model parameters and optimizer states -├── speaker_id_map.txt # speaker id map file when training a multi-speaker fastspeech2 -└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2 -``` -You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models. -```bash -source path.sh - -FLAGS_allocator_strategy=naive_best_fit \ -FLAGS_fraction_of_gpu_memory_to_use=0.01 \ -python3 ${BIN_DIR}/../synthesize_e2e.py \ - --am=fastspeech2_aishell3 \ - --am_config=fastspeech2_aishell3_ckpt_1.1.0/default.yaml \ - --am_ckpt=fastspeech2_aishell3_ckpt_1.1.0/snapshot_iter_96400.pdz \ - --am_stat=fastspeech2_aishell3_ckpt_1.1.0/speech_stats.npy \ - --voc=pwgan_aishell3 \ - --voc_config=pwg_aishell3_ckpt_0.5/default.yaml \ - --voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \ - --voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \ - --lang=zh \ - --text=${BIN_DIR}/../sentences.txt \ - --output_dir=exp/default/test_e2e \ - --phones_dict=fastspeech2_aishell3_ckpt_1.1.0/phone_id_map.txt \ - --speaker_dict=fastspeech2_aishell3_ckpt_1.1.0/speaker_id_map.txt \ - --spk_id=0 \ - --inference_dir=exp/default/inference -``` +## Pretrained Model diff --git a/examples/canton/tts3/run.sh b/examples/canton/tts3/run.sh index 9e5c27a16..7c9038d45 100755 --- a/examples/canton/tts3/run.sh +++ b/examples/canton/tts3/run.sh @@ -35,36 +35,3 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # synthesize_e2e, vocoder is pwgan by default CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1 fi - -if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then - # inference with static model, vocoder is pwgan by default - CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1 -fi - -if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then - # install paddle2onnx - version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}') - if [[ -z "$version" || ${version} != '1.0.0' ]]; then - pip install paddle2onnx==1.0.0 - fi - ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_aishell3 - # considering the balance between speed and quality, we recommend that you use hifigan as vocoder - ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx pwgan_aishell3 - # ./local/paddle2onnx.sh ${train_output_path} inference inference_onnx hifigan_aishell3 - -fi - -# inference with onnxruntime, use fastspeech2 + pwgan by default -if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then - ./local/ort_predict.sh ${train_output_path} -fi - -if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then - ./local/export2lite.sh ${train_output_path} inference pdlite fastspeech2_aishell3 x86 - ./local/export2lite.sh ${train_output_path} inference pdlite pwgan_aishell3 x86 - # ./local/export2lite.sh ${train_output_path} inference pdlite hifigan_aishell3 x86 -fi - -if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then - CUDA_VISIBLE_DEVICES=${gpus} ./local/lite_predict.sh ${train_output_path} || exit -1 -fi