From 6eb3324dd330e339013a15a92d3e8a64c51d824f Mon Sep 17 00:00:00 2001 From: Hui Zhang Date: Mon, 17 May 2021 02:40:42 +0000 Subject: [PATCH] ctc decoding weight 0.5 --- examples/aishell/s1/conf/conformer.yaml | 6 +++--- examples/librispeech/s1/conf/chunk_confermer.yaml | 2 +- examples/librispeech/s1/conf/chunk_transformer.yaml | 2 +- examples/librispeech/s1/conf/conformer.yaml | 6 +++--- examples/librispeech/s1/conf/transformer.yaml | 2 +- 5 files changed, 9 insertions(+), 9 deletions(-) diff --git a/examples/aishell/s1/conf/conformer.yaml b/examples/aishell/s1/conf/conformer.yaml index 40b04ed7b..10c3a2822 100644 --- a/examples/aishell/s1/conf/conformer.yaml +++ b/examples/aishell/s1/conf/conformer.yaml @@ -74,13 +74,13 @@ model: training: - n_epoch: 300 + n_epoch: 240 accum_grad: 2 global_grad_clip: 5.0 optim: adam optim_conf: lr: 0.002 - weight_decay: 1e-06 + weight_decay: 1e-6 scheduler: warmuplr # pytorch v1.1.0+ required scheduler_conf: warmup_steps: 25000 @@ -99,7 +99,7 @@ decoding: cutoff_prob: 1.0 cutoff_top_n: 0 num_proc_bsearch: 8 - ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. # <0: for decoding, use full chunk. # >0: for decoding, use fixed chunk size as set. diff --git a/examples/librispeech/s1/conf/chunk_confermer.yaml b/examples/librispeech/s1/conf/chunk_confermer.yaml index 3ee31e1b2..0d07d0a7e 100644 --- a/examples/librispeech/s1/conf/chunk_confermer.yaml +++ b/examples/librispeech/s1/conf/chunk_confermer.yaml @@ -104,7 +104,7 @@ decoding: cutoff_prob: 1.0 cutoff_top_n: 0 num_proc_bsearch: 8 - ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. # <0: for decoding, use full chunk. # >0: for decoding, use fixed chunk size as set. diff --git a/examples/librispeech/s1/conf/chunk_transformer.yaml b/examples/librispeech/s1/conf/chunk_transformer.yaml index 265e6e0b6..3939ffc68 100644 --- a/examples/librispeech/s1/conf/chunk_transformer.yaml +++ b/examples/librispeech/s1/conf/chunk_transformer.yaml @@ -97,7 +97,7 @@ decoding: cutoff_prob: 1.0 cutoff_top_n: 0 num_proc_bsearch: 8 - ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. # <0: for decoding, use full chunk. # >0: for decoding, use fixed chunk size as set. diff --git a/examples/librispeech/s1/conf/conformer.yaml b/examples/librispeech/s1/conf/conformer.yaml index 1981b946f..f89f82655 100644 --- a/examples/librispeech/s1/conf/conformer.yaml +++ b/examples/librispeech/s1/conf/conformer.yaml @@ -8,7 +8,7 @@ data: spm_model_prefix: 'data/bpe_unigram_5000' mean_std_filepath: "" augmentation_config: conf/augmentation.json - batch_size: 64 + batch_size: 16 min_input_len: 0.5 # seconds max_input_len: 20.0 # seconds min_output_len: 0.0 # tokens @@ -76,7 +76,7 @@ model: training: n_epoch: 120 - accum_grad: 2 + accum_grad: 8 global_grad_clip: 5.0 optim: adam optim_conf: @@ -100,7 +100,7 @@ decoding: cutoff_prob: 1.0 cutoff_top_n: 0 num_proc_bsearch: 8 - ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. # <0: for decoding, use full chunk. # >0: for decoding, use fixed chunk size as set. diff --git a/examples/librispeech/s1/conf/transformer.yaml b/examples/librispeech/s1/conf/transformer.yaml index 8ef9e12f1..9014e5b84 100644 --- a/examples/librispeech/s1/conf/transformer.yaml +++ b/examples/librispeech/s1/conf/transformer.yaml @@ -95,7 +95,7 @@ decoding: cutoff_prob: 1.0 cutoff_top_n: 0 num_proc_bsearch: 8 - ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. # <0: for decoding, use full chunk. # >0: for decoding, use fixed chunk size as set.