parent
979bbd9dcb
commit
6d867f714d
@ -0,0 +1,98 @@
|
||||
############################################
|
||||
# Network Architecture #
|
||||
############################################
|
||||
cmvn_file:
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: conformer
|
||||
encoder_conf:
|
||||
encoder_dim: 256 # dimension of attention
|
||||
output_size: 256 # dimension of output
|
||||
attention_heads: 4
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
reduce_idx: 5
|
||||
recover_idx: 11
|
||||
feed_forward_expansion_factor: 4
|
||||
input_dropout_rate: 0.1
|
||||
feed_forward_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
adaptive_scale: true
|
||||
cnn_module_kernel: 31
|
||||
normalize_before: false
|
||||
activation_type: 'swish'
|
||||
pos_enc_layer_type: 'rel_pos'
|
||||
time_reduction_layer_type: 'conv2d'
|
||||
causal: true
|
||||
use_dynamic_chunk: true
|
||||
use_dynamic_left_chunk: false
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1 # sublayer output dropout
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
init_type: 'kaiming_uniform' # !Warning: need to convergence
|
||||
|
||||
###########################################
|
||||
# Data #
|
||||
###########################################
|
||||
|
||||
train_manifest: data/manifest.train
|
||||
dev_manifest: data/manifest.dev
|
||||
test_manifest: data/manifest.test
|
||||
|
||||
|
||||
###########################################
|
||||
# Dataloader #
|
||||
###########################################
|
||||
|
||||
vocab_filepath: data/lang_char/vocab.txt
|
||||
spm_model_prefix: ''
|
||||
unit_type: 'char'
|
||||
preprocess_config: conf/preprocess.yaml
|
||||
feat_dim: 80
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||
batch_size: 32
|
||||
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||
minibatches: 0 # for debug
|
||||
batch_count: auto
|
||||
batch_bins: 0
|
||||
batch_frames_in: 0
|
||||
batch_frames_out: 0
|
||||
batch_frames_inout: 0
|
||||
num_workers: 2
|
||||
subsampling_factor: 1
|
||||
num_encs: 1
|
||||
|
||||
###########################################
|
||||
# Training #
|
||||
###########################################
|
||||
n_epoch: 240
|
||||
accum_grad: 1
|
||||
global_grad_clip: 5.0
|
||||
dist_sampler: True
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
weight_decay: 1.0e-6
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 100
|
||||
checkpoint:
|
||||
kbest_n: 50
|
||||
latest_n: 5
|
@ -0,0 +1,93 @@
|
||||
############################################
|
||||
# Network Architecture #
|
||||
############################################
|
||||
cmvn_file:
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: squeezeformer
|
||||
encoder_conf:
|
||||
encoder_dim: 256 # dimension of attention
|
||||
output_size: 256 # dimension of output
|
||||
attention_heads: 4
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
reduce_idx: 5
|
||||
recover_idx: 11
|
||||
feed_forward_expansion_factor: 4
|
||||
input_dropout_rate: 0.1
|
||||
feed_forward_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
adaptive_scale: true
|
||||
cnn_module_kernel: 31
|
||||
normalize_before: false
|
||||
activation_type: 'swish'
|
||||
pos_enc_layer_type: 'rel_pos'
|
||||
time_reduction_layer_type: 'conv2d'
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
init_type: 'kaiming_uniform' # !Warning: need to convergence
|
||||
|
||||
###########################################
|
||||
# Data #
|
||||
###########################################
|
||||
train_manifest: data/manifest.train
|
||||
dev_manifest: data/manifest.dev
|
||||
test_manifest: data/manifest.test
|
||||
|
||||
###########################################
|
||||
# Dataloader #
|
||||
###########################################
|
||||
vocab_filepath: data/lang_char/vocab.txt
|
||||
spm_model_prefix: ''
|
||||
unit_type: 'char'
|
||||
preprocess_config: conf/preprocess.yaml
|
||||
feat_dim: 80
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||
batch_size: 32
|
||||
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||
minibatches: 0 # for debug
|
||||
batch_count: auto
|
||||
batch_bins: 0
|
||||
batch_frames_in: 0
|
||||
batch_frames_out: 0
|
||||
batch_frames_inout: 0
|
||||
num_workers: 2
|
||||
subsampling_factor: 1
|
||||
num_encs: 1
|
||||
|
||||
###########################################
|
||||
# Training #
|
||||
###########################################
|
||||
n_epoch: 150
|
||||
accum_grad: 8
|
||||
global_grad_clip: 5.0
|
||||
dist_sampler: False
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002
|
||||
weight_decay: 1.0e-6
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 100
|
||||
checkpoint:
|
||||
kbest_n: 50
|
||||
latest_n: 5
|
@ -0,0 +1,56 @@
|
||||
from typing import Union, Optional
|
||||
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn.layer.conv import _ConvNd
|
||||
|
||||
__all__ = ['Conv2DValid']
|
||||
|
||||
|
||||
class Conv2DValid(_ConvNd):
|
||||
"""
|
||||
Conv2d operator for VALID mode padding.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
padding: Union[str, int] = 0,
|
||||
dilation: int = 1,
|
||||
groups: int = 1,
|
||||
padding_mode: str = 'zeros',
|
||||
weight_attr=None,
|
||||
bias_attr=None,
|
||||
data_format="NCHW",
|
||||
valid_trigx: bool = False,
|
||||
valid_trigy: bool = False
|
||||
) -> None:
|
||||
super(Conv2DValid, self).__init__(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
False,
|
||||
2,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
padding_mode=padding_mode,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
weight_attr=weight_attr,
|
||||
bias_attr=bias_attr,
|
||||
data_format=data_format)
|
||||
self.valid_trigx = valid_trigx
|
||||
self.valid_trigy = valid_trigy
|
||||
|
||||
def _conv_forward(self, input: paddle.Tensor, weight: paddle.Tensor, bias: Optional[paddle.Tensor]):
|
||||
validx, validy = 0, 0
|
||||
if self.valid_trigx:
|
||||
validx = (input.shape[-2] * (self._stride[-2] - 1) - 1 + self._kernel_size[-2]) // 2
|
||||
if self.valid_trigy:
|
||||
validy = (input.shape[-1] * (self._stride[-1] - 1) - 1 + self._kernel_size[-1]) // 2
|
||||
return F.conv2d(input, weight, bias, self._stride, (validx, validy), self._dilation, self._groups)
|
||||
|
||||
def forward(self, input: paddle.Tensor) -> paddle.Tensor:
|
||||
return self._conv_forward(input, self.weight, self.bias)
|
@ -0,0 +1,172 @@
|
||||
from typing import Tuple
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import initializer as I
|
||||
from typeguard import check_argument_types
|
||||
|
||||
__all__ = ['ConvolutionModule']
|
||||
|
||||
from paddlespeech.s2t import masked_fill
|
||||
from paddlespeech.s2t.modules.align import Conv1D, BatchNorm1D, LayerNorm
|
||||
|
||||
|
||||
class ConvolutionModule2(nn.Layer):
|
||||
"""ConvolutionModule in Conformer model."""
|
||||
|
||||
def __init__(self,
|
||||
channels: int,
|
||||
kernel_size: int = 15,
|
||||
activation: nn.Layer = nn.ReLU(),
|
||||
norm: str = "batch_norm",
|
||||
causal: bool = False,
|
||||
bias: bool = True,
|
||||
adaptive_scale: bool = False,
|
||||
init_weights: bool = False):
|
||||
"""Construct an ConvolutionModule object.
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernel size of conv layers.
|
||||
causal (int): Whether use causal convolution or not
|
||||
"""
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
self.bias = bias
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.adaptive_scale = adaptive_scale
|
||||
ada_scale = self.create_parameter([1, 1, channels], default_initializer=I.Constant(1.0))
|
||||
self.add_parameter('ada_scale', ada_scale)
|
||||
ada_bias = self.create_parameter([1, 1, channels], default_initializer=I.Constant(0.0))
|
||||
self.add_parameter('ada_bias', ada_bias)
|
||||
|
||||
self.pointwise_conv1 = Conv1D(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias_attr=None
|
||||
if bias else False, # None for True, using bias as default config
|
||||
)
|
||||
|
||||
# self.lorder is used to distinguish if it's a causal convolution,
|
||||
# if self.lorder > 0: it's a causal convolution, the input will be
|
||||
# padded with self.lorder frames on the left in forward.
|
||||
# else: it's a symmetrical convolution
|
||||
if causal:
|
||||
padding = 0
|
||||
self.lorder = kernel_size - 1
|
||||
else:
|
||||
# kernel_size should be an odd number for none causal convolution
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.lorder = 0
|
||||
self.depthwise_conv = Conv1D(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=padding,
|
||||
groups=channels,
|
||||
bias_attr=None
|
||||
if bias else False, # None for True, using bias as default config
|
||||
)
|
||||
|
||||
assert norm in ['batch_norm', 'layer_norm']
|
||||
if norm == "batch_norm":
|
||||
self.use_layer_norm = False
|
||||
self.norm = BatchNorm1D(channels)
|
||||
else:
|
||||
self.use_layer_norm = True
|
||||
self.norm = LayerNorm(channels)
|
||||
|
||||
self.pointwise_conv2 = Conv1D(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias_attr=None
|
||||
if bias else False, # None for True, using bias as default config
|
||||
)
|
||||
self.activation = activation
|
||||
|
||||
if init_weights:
|
||||
self.init_weights()
|
||||
|
||||
def init_weights(self):
|
||||
pw_max = self.channels ** -0.5
|
||||
dw_max = self.kernel_size ** -0.5
|
||||
self.pointwise_conv1._param_attr = paddle.nn.initializer.Uniform(low=-pw_max, high=pw_max)
|
||||
if self.bias:
|
||||
self.pointwise_conv1._bias_attr = paddle.nn.initializer.Uniform(low=-pw_max, high=pw_max)
|
||||
self.depthwise_conv._param_attr = paddle.nn.initializer.Uniform(low=-dw_max, high=dw_max)
|
||||
if self.bias:
|
||||
self.depthwise_conv._bias_attr = paddle.nn.initializer.Uniform(low=-dw_max, high=dw_max)
|
||||
self.pointwise_conv2._param_attr = paddle.nn.initializer.Uniform(low=-pw_max, high=pw_max)
|
||||
if self.bias:
|
||||
self.pointwise_conv2._bias_attr = paddle.nn.initializer.Uniform(low=-pw_max, high=pw_max)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: paddle.Tensor,
|
||||
mask_pad: paddle.Tensor = paddle.ones([0, 0, 0], dtype=paddle.bool),
|
||||
cache: paddle.Tensor = paddle.zeros([0, 0, 0]),
|
||||
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
||||
"""Compute convolution module.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, channels).
|
||||
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
||||
(0, 0, 0) means fake mask.
|
||||
cache (torch.Tensor): left context cache, it is only
|
||||
used in causal convolution (#batch, channels, cache_t),
|
||||
(0, 0, 0) meas fake cache.
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, channels).
|
||||
"""
|
||||
if self.adaptive_scale:
|
||||
x = self.ada_scale * x + self.ada_bias
|
||||
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.transpose([0, 2, 1]) # [B, C, T]
|
||||
|
||||
# mask batch padding
|
||||
if mask_pad.shape[2] > 0: # time > 0
|
||||
x = masked_fill(x, mask_pad, 0.0)
|
||||
|
||||
if self.lorder > 0:
|
||||
if cache.shape[2] == 0: # cache_t == 0
|
||||
x = nn.functional.pad(x, [self.lorder, 0], 'constant', 0.0, data_format='NCL')
|
||||
else:
|
||||
assert cache.shape[0] == x.shape[0] # B
|
||||
assert cache.shape[1] == x.shape[1] # C
|
||||
x = paddle.concat((cache, x), axis=2)
|
||||
|
||||
assert (x.shape[2] > self.lorder)
|
||||
new_cache = x[:, :, -self.lorder:] # [B, C, T]
|
||||
else:
|
||||
# It's better we just return None if no cache is required,
|
||||
# However, for JIT export, here we just fake one tensor instead of
|
||||
# None.
|
||||
new_cache = paddle.zeros([0, 0, 0], dtype=x.dtype)
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
||||
x = nn.functional.glu(x, axis=1) # (batch, channel, dim)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
x = self.depthwise_conv(x)
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose([0, 2, 1]) # [B, T, C]
|
||||
x = self.activation(self.norm(x))
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose([0, 2, 1]) # [B, C, T]
|
||||
x = self.pointwise_conv2(x)
|
||||
|
||||
# mask batch padding
|
||||
if mask_pad.shape[2] > 0: # time > 0
|
||||
x = masked_fill(x, mask_pad, 0.0)
|
||||
|
||||
x = x.transpose([0, 2, 1]) # [B, T, C]
|
||||
return x, new_cache
|
Loading…
Reference in new issue