add sid loss wraper for voxceleb, test=doc

pull/1523/head
xiongxinlei 3 years ago
parent 57c4f4a68c
commit 6af2bc3d5b

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import paddle
@ -19,7 +20,7 @@ from paddleaudio.datasets.voxceleb import VoxCeleb1
from paddlespeech.vector.layers.lr import CyclicLRScheduler
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
from paddlespeech.vector.training.sid_model import SpeakerIdetification
from paddlespeech.vector.layers.loss import AdditiveAngularMargin, LogSoftmaxWrapper
def main(args):
# stage0: set the training device, cpu or gpu
@ -33,6 +34,7 @@ def main(args):
# stage2: data prepare
# note: some cmd must do in rank==0
train_ds = VoxCeleb1('train', target_dir=args.data_dir)
dev_ds = VoxCeleb1('dev', target_dir=args.data_dir)
# stage3: build the dnn backbone model network
model_conf = {
@ -56,8 +58,38 @@ def main(args):
learning_rate=lr_schedule, parameters=model.parameters())
# stage6: build the loss function, we now only support LogSoftmaxWrapper
criterion = LogSoftmaxWrapper(
loss_fn=AdditiveAngularMargin(margin=0.2, scale=30))
# stage7: confirm training start epoch
# if pre-trained model exists, start epoch confirmed by the pre-trained model
start_epoch = 0
if args.load_checkpoint:
args.load_checkpoint = os.path.abspath(
os.path.expanduser(args.load_checkpoint))
try:
# load model checkpoint
state_dict = paddle.load(
os.path.join(args.load_checkpoint, 'model.pdparams'))
model.set_state_dict(state_dict)
# load optimizer checkpoint
state_dict = paddle.load(
os.path.join(args.load_checkpoint, 'model.pdopt'))
optimizer.set_state_dict(state_dict)
if local_rank == 0:
print(f'Checkpoint loaded from {args.load_checkpoint}')
except FileExistsError:
if local_rank == 0:
print('Train from scratch.')
try:
start_epoch = int(args.load_checkpoint[-1])
print(f'Restore training from epoch {start_epoch}.')
except ValueError:
pass
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
@ -73,6 +105,11 @@ if __name__ == "__main__":
type=float,
default=1e-8,
help="Learning rate used to train with warmup.")
parser.add_argument("--load_checkpoint",
type=str,
default=None,
help="Directory to load model checkpoint to contiune trainning.")
args = parser.parse_args()
# yapf: enable

@ -23,15 +23,29 @@ from .log import logger
download.logger = logger
def decompress(file: str):
def decompress(file: str, path: str=os.PathLike):
"""
Extracts all files from a compressed file.
Extracts all files from a compressed file to specific path.
"""
assert os.path.isfile(file), "File: {} not exists.".format(file)
download._decompress(file)
if path is None:
print("decompress the data: {}".format(file))
download._decompress(file)
else:
print("decompress the data: {} to {}".format(file, path))
if not os.path.isdir(path):
os.makedirs(path)
def download_and_decompress(archives: List[Dict[str, str]], path: str):
tmp_file = os.path.join(path, os.path.basename(file))
os.rename(file, tmp_file)
download._decompress(tmp_file)
os.rename(tmp_file, file)
def download_and_decompress(archives: List[Dict[str, str]],
path: str,
decompress: bool=True):
"""
Download archieves and decompress to specific path.
"""
@ -41,8 +55,8 @@ def download_and_decompress(archives: List[Dict[str, str]], path: str):
for archive in archives:
assert 'url' in archive and 'md5' in archive, \
'Dictionary keys of "url" and "md5" are required in the archive, but got: {list(archieve.keys())}'
download.get_path_from_url(archive['url'], path, archive['md5'])
download.get_path_from_url(
archive['url'], path, archive['md5'], decompress=decompress)
def load_state_dict_from_url(url: str, path: str, md5: str=None):

@ -0,0 +1,70 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class AngularMargin(nn.Layer):
def __init__(self, margin=0.0, scale=1.0):
super(AngularMargin, self).__init__()
self.margin = margin
self.scale = scale
def forward(self, outputs, targets):
outputs = outputs - self.margin * targets
return self.scale * outputs
class AdditiveAngularMargin(AngularMargin):
def __init__(self, margin=0.0, scale=1.0, easy_margin=False):
super(AdditiveAngularMargin, self).__init__(margin, scale)
self.easy_margin = easy_margin
self.cos_m = math.cos(self.margin)
self.sin_m = math.sin(self.margin)
self.th = math.cos(math.pi - self.margin)
self.mm = math.sin(math.pi - self.margin) * self.margin
def forward(self, outputs, targets):
cosine = outputs.astype('float32')
sine = paddle.sqrt(1.0 - paddle.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
if self.easy_margin:
phi = paddle.where(cosine > 0, phi, cosine)
else:
phi = paddle.where(cosine > self.th, phi, cosine - self.mm)
outputs = (targets * phi) + ((1.0 - targets) * cosine)
return self.scale * outputs
class LogSoftmaxWrapper(nn.Layer):
def __init__(self, loss_fn):
super(LogSoftmaxWrapper, self).__init__()
self.loss_fn = loss_fn
self.criterion = paddle.nn.KLDivLoss(reduction="sum")
def forward(self, outputs, targets, length=None):
targets = F.one_hot(targets, outputs.shape[1])
try:
predictions = self.loss_fn(outputs, targets)
except TypeError:
predictions = self.loss_fn(outputs)
predictions = F.log_softmax(predictions, axis=1)
loss = self.criterion(predictions, targets) / targets.sum()
return loss
Loading…
Cancel
Save