parent
57c4f4a68c
commit
6af2bc3d5b
@ -0,0 +1,70 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
|
||||
class AngularMargin(nn.Layer):
|
||||
def __init__(self, margin=0.0, scale=1.0):
|
||||
super(AngularMargin, self).__init__()
|
||||
self.margin = margin
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, outputs, targets):
|
||||
outputs = outputs - self.margin * targets
|
||||
return self.scale * outputs
|
||||
|
||||
|
||||
class AdditiveAngularMargin(AngularMargin):
|
||||
def __init__(self, margin=0.0, scale=1.0, easy_margin=False):
|
||||
super(AdditiveAngularMargin, self).__init__(margin, scale)
|
||||
self.easy_margin = easy_margin
|
||||
|
||||
self.cos_m = math.cos(self.margin)
|
||||
self.sin_m = math.sin(self.margin)
|
||||
self.th = math.cos(math.pi - self.margin)
|
||||
self.mm = math.sin(math.pi - self.margin) * self.margin
|
||||
|
||||
def forward(self, outputs, targets):
|
||||
cosine = outputs.astype('float32')
|
||||
sine = paddle.sqrt(1.0 - paddle.pow(cosine, 2))
|
||||
phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
|
||||
if self.easy_margin:
|
||||
phi = paddle.where(cosine > 0, phi, cosine)
|
||||
else:
|
||||
phi = paddle.where(cosine > self.th, phi, cosine - self.mm)
|
||||
outputs = (targets * phi) + ((1.0 - targets) * cosine)
|
||||
return self.scale * outputs
|
||||
|
||||
|
||||
class LogSoftmaxWrapper(nn.Layer):
|
||||
def __init__(self, loss_fn):
|
||||
super(LogSoftmaxWrapper, self).__init__()
|
||||
self.loss_fn = loss_fn
|
||||
self.criterion = paddle.nn.KLDivLoss(reduction="sum")
|
||||
|
||||
def forward(self, outputs, targets, length=None):
|
||||
targets = F.one_hot(targets, outputs.shape[1])
|
||||
try:
|
||||
predictions = self.loss_fn(outputs, targets)
|
||||
except TypeError:
|
||||
predictions = self.loss_fn(outputs)
|
||||
|
||||
predictions = F.log_softmax(predictions, axis=1)
|
||||
loss = self.criterion(predictions, targets) / targets.sum()
|
||||
return loss
|
Loading…
Reference in new issue