parent
b6fbacdd9b
commit
683679bec7
@ -1,17 +0,0 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""t2s's infrastructure for data processing.
|
||||
"""
|
||||
from .batch import *
|
||||
from .dataset import *
|
@ -1,261 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import six
|
||||
from paddle.io import Dataset
|
||||
|
||||
__all__ = [
|
||||
"split",
|
||||
"TransformDataset",
|
||||
"CacheDataset",
|
||||
"TupleDataset",
|
||||
"DictDataset",
|
||||
"SliceDataset",
|
||||
"SubsetDataset",
|
||||
"FilterDataset",
|
||||
"ChainDataset",
|
||||
]
|
||||
|
||||
|
||||
def split(dataset, first_size):
|
||||
"""A utility function to split a dataset into two datasets."""
|
||||
first = SliceDataset(dataset, 0, first_size)
|
||||
second = SliceDataset(dataset, first_size, len(dataset))
|
||||
return first, second
|
||||
|
||||
|
||||
class TransformDataset(Dataset):
|
||||
def __init__(self, dataset, transform):
|
||||
"""Dataset which is transformed from another with a transform.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): the base dataset.
|
||||
transform (callable): the transform which takes an example of the base dataset as parameter and return a new example.
|
||||
"""
|
||||
self._dataset = dataset
|
||||
self._transform = transform
|
||||
|
||||
def __len__(self):
|
||||
return len(self._dataset)
|
||||
|
||||
def __getitem__(self, i):
|
||||
in_data = self._dataset[i]
|
||||
return self._transform(in_data)
|
||||
|
||||
|
||||
class CacheDataset(Dataset):
|
||||
def __init__(self, dataset):
|
||||
"""A lazy cache of the base dataset.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): the base dataset to cache.
|
||||
"""
|
||||
self._dataset = dataset
|
||||
self._cache = dict()
|
||||
|
||||
def __len__(self):
|
||||
return len(self._dataset)
|
||||
|
||||
def __getitem__(self, i):
|
||||
if i not in self._cache:
|
||||
self._cache[i] = self._dataset[i]
|
||||
return self._cache[i]
|
||||
|
||||
|
||||
class TupleDataset(Dataset):
|
||||
def __init__(self, *datasets):
|
||||
"""A compound dataset made from several datasets of the same length. An example of the `TupleDataset` is a tuple of examples from the constituent datasets.
|
||||
|
||||
Args:
|
||||
datasets: tuple[Dataset], the constituent datasets.
|
||||
"""
|
||||
if not datasets:
|
||||
raise ValueError("no datasets are given")
|
||||
length = len(datasets[0])
|
||||
for i, dataset in enumerate(datasets):
|
||||
if len(dataset) != length:
|
||||
raise ValueError("all the datasets should have the same length."
|
||||
"dataset {} has a different length".format(i))
|
||||
self._datasets = datasets
|
||||
self._length = length
|
||||
|
||||
def __getitem__(self, index):
|
||||
# SOA
|
||||
batches = [dataset[index] for dataset in self._datasets]
|
||||
if isinstance(index, slice):
|
||||
length = len(batches[0])
|
||||
# AOS
|
||||
return [
|
||||
tuple([batch[i] for batch in batches])
|
||||
for i in six.moves.range(length)
|
||||
]
|
||||
else:
|
||||
return tuple(batches)
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
|
||||
class DictDataset(Dataset):
|
||||
def __init__(self, **datasets):
|
||||
"""
|
||||
A compound dataset made from several datasets of the same length. An
|
||||
example of the `DictDataset` is a dict of examples from the constituent
|
||||
datasets.
|
||||
|
||||
WARNING: paddle does not have a good support for DictDataset, because
|
||||
every batch yield from a DataLoader is a list, but it cannot be a dict.
|
||||
So you have to provide a collate function because you cannot use the
|
||||
default one.
|
||||
|
||||
Args:
|
||||
datasets: Dict[Dataset], the constituent datasets.
|
||||
"""
|
||||
if not datasets:
|
||||
raise ValueError("no datasets are given")
|
||||
length = None
|
||||
for key, dataset in six.iteritems(datasets):
|
||||
if length is None:
|
||||
length = len(dataset)
|
||||
elif len(dataset) != length:
|
||||
raise ValueError(
|
||||
"all the datasets should have the same length."
|
||||
"dataset {} has a different length".format(key))
|
||||
self._datasets = datasets
|
||||
self._length = length
|
||||
|
||||
def __getitem__(self, index):
|
||||
batches = {
|
||||
key: dataset[index]
|
||||
for key, dataset in six.iteritems(self._datasets)
|
||||
}
|
||||
if isinstance(index, slice):
|
||||
length = len(six.next(six.itervalues(batches)))
|
||||
return [{key: batch[i]
|
||||
for key, batch in six.iteritems(batches)}
|
||||
for i in six.moves.range(length)]
|
||||
else:
|
||||
return batches
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
|
||||
class SliceDataset(Dataset):
|
||||
def __init__(self, dataset, start, finish, order=None):
|
||||
"""A Dataset which is a slice of the base dataset.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): the base dataset.
|
||||
start (int): the start of the slice.
|
||||
finish (int): the end of the slice, not inclusive.
|
||||
order (List[int], optional): the order, it is a permutation of the valid example ids of the base dataset. If `order` is provided, the slice is taken in `order`. Defaults to None.
|
||||
"""
|
||||
if start < 0 or finish > len(dataset):
|
||||
raise ValueError("subset overruns the dataset.")
|
||||
self._dataset = dataset
|
||||
self._start = start
|
||||
self._finish = finish
|
||||
self._size = finish - start
|
||||
|
||||
if order is not None and len(order) != len(dataset):
|
||||
raise ValueError(
|
||||
"order should have the same length as the dataset"
|
||||
"len(order) = {} which does not euqals len(dataset) = {} ".
|
||||
format(len(order), len(dataset)))
|
||||
self._order = order
|
||||
|
||||
def __len__(self):
|
||||
return self._size
|
||||
|
||||
def __getitem__(self, i):
|
||||
if i >= 0:
|
||||
if i >= self._size:
|
||||
raise IndexError('dataset index out of range')
|
||||
index = self._start + i
|
||||
else:
|
||||
if i < -self._size:
|
||||
raise IndexError('dataset index out of range')
|
||||
index = self._finish + i
|
||||
|
||||
if self._order is not None:
|
||||
index = self._order[index]
|
||||
return self._dataset[index]
|
||||
|
||||
|
||||
class SubsetDataset(Dataset):
|
||||
def __init__(self, dataset, indices):
|
||||
"""A Dataset which is a subset of the base dataset.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): the base dataset.
|
||||
indices (Iterable[int]): the indices of the examples to pick.
|
||||
"""
|
||||
self._dataset = dataset
|
||||
if len(indices) > len(dataset):
|
||||
raise ValueError("subset's size larger that dataset's size!")
|
||||
self._indices = indices
|
||||
self._size = len(indices)
|
||||
|
||||
def __len__(self):
|
||||
return self._size
|
||||
|
||||
def __getitem__(self, i):
|
||||
index = self._indices[i]
|
||||
return self._dataset[index]
|
||||
|
||||
|
||||
class FilterDataset(Dataset):
|
||||
def __init__(self, dataset, filter_fn):
|
||||
"""A filtered dataset.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): the base dataset.
|
||||
filter_fn (callable): a callable which takes an example of the base dataset and return a boolean.
|
||||
"""
|
||||
self._dataset = dataset
|
||||
self._indices = [
|
||||
i for i in range(len(dataset)) if filter_fn(dataset[i])
|
||||
]
|
||||
self._size = len(self._indices)
|
||||
|
||||
def __len__(self):
|
||||
return self._size
|
||||
|
||||
def __getitem__(self, i):
|
||||
index = self._indices[i]
|
||||
return self._dataset[index]
|
||||
|
||||
|
||||
class ChainDataset(Dataset):
|
||||
def __init__(self, *datasets):
|
||||
"""A concatenation of the several datasets which the same structure.
|
||||
|
||||
Args:
|
||||
datasets (Iterable[Dataset]): datasets to concat.
|
||||
"""
|
||||
self._datasets = datasets
|
||||
|
||||
def __len__(self):
|
||||
return sum(len(dataset) for dataset in self._datasets)
|
||||
|
||||
def __getitem__(self, i):
|
||||
if i < 0:
|
||||
raise IndexError("ChainDataset doesnot support negative indexing.")
|
||||
|
||||
for dataset in self._datasets:
|
||||
if i < len(dataset):
|
||||
return dataset[i]
|
||||
i -= len(dataset)
|
||||
|
||||
raise IndexError("dataset index out of range")
|
@ -1,92 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
from paddle.io import Dataset
|
||||
|
||||
__all__ = ["AudioSegmentDataset", "AudioDataset", "AudioFolderDataset"]
|
||||
|
||||
|
||||
class AudioSegmentDataset(Dataset):
|
||||
"""A simple dataset adaptor for audio files to train vocoders.
|
||||
Read -> trim silence -> normalize -> extract a segment
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
file_paths: List[Path],
|
||||
sample_rate: int,
|
||||
length: int,
|
||||
top_db: float):
|
||||
self.file_paths = file_paths
|
||||
self.sr = sample_rate
|
||||
self.top_db = top_db
|
||||
self.length = length # samples in the clip
|
||||
|
||||
def __getitem__(self, i):
|
||||
fpath = self.file_paths[i]
|
||||
y, sr = librosa.load(fpath, sr=self.sr)
|
||||
y, _ = librosa.effects.trim(y, top_db=self.top_db)
|
||||
y = librosa.util.normalize(y)
|
||||
y = y.astype(np.float32)
|
||||
|
||||
# pad or trim
|
||||
if y.size <= self.length:
|
||||
y = np.pad(y, [0, self.length - len(y)], mode='constant')
|
||||
else:
|
||||
start = np.random.randint(0, 1 + len(y) - self.length)
|
||||
y = y[start:start + self.length]
|
||||
return y
|
||||
|
||||
def __len__(self):
|
||||
return len(self.file_paths)
|
||||
|
||||
|
||||
class AudioDataset(Dataset):
|
||||
"""A simple dataset adaptor for the audio files.
|
||||
Read -> trim silence -> normalize
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
file_paths: List[Path],
|
||||
sample_rate: int,
|
||||
top_db: float=60):
|
||||
self.file_paths = file_paths
|
||||
self.sr = sample_rate
|
||||
self.top_db = top_db
|
||||
|
||||
def __getitem__(self, i):
|
||||
fpath = self.file_paths[i]
|
||||
y, sr = librosa.load(fpath, sr=self.sr)
|
||||
y, _ = librosa.effects.trim(y, top_db=self.top_db)
|
||||
y = librosa.util.normalize(y)
|
||||
y = y.astype(np.float32)
|
||||
return y
|
||||
|
||||
def __len__(self):
|
||||
return len(self.file_paths)
|
||||
|
||||
|
||||
class AudioFolderDataset(AudioDataset):
|
||||
def __init__(
|
||||
self,
|
||||
root,
|
||||
sample_rate,
|
||||
top_db=60,
|
||||
extension=".wav", ):
|
||||
root = Path(root).expanduser()
|
||||
file_paths = sorted(list(root.rglob("*{}".format(extension))))
|
||||
super().__init__(file_paths, sample_rate, top_db)
|
Loading…
Reference in new issue