update model link and add readme.

pull/3012/head
zxcd 3 years ago
parent a308c673b5
commit 6836634aff

@ -178,6 +178,7 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision
- 🧩 *Cascaded models application*: as an extension of the typical traditional audio tasks, we combine the workflows of the aforementioned tasks with other fields like Natural language processing (NLP) and Computer Vision (CV).
### Recent Update
- 👑 2023.03.09: Add [Wav2vec2ASR-zh](./examples/aishell/asr3).
- 🎉 2023.03.07: Add [TTS ARM Linux C++ Demo](./demos/TTSArmLinux).
- 🎉 2023.02.16: Add [Cantonese TTS](./examples/canton/tts3).
- 🔥 2023.01.10: Add [code-switch asr CLI and Demos](./demos/speech_recognition).

@ -183,6 +183,7 @@
- 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。
### 近期更新
- 👑 2023.03.09: 新增 [Wav2vec2ASR-zh](./examples/aishell/asr3).
- 🎉 2023.03.07: 新增 [TTS ARM Linux C++ 部署示例](./demos/TTSArmLinux)。
- 🎉 2023.02.16: 新增[粤语语音合成](./examples/canton/tts3)。
- 🔥 2023.01.10: 新增[中英混合 ASR CLI 和 Demos](./demos/speech_recognition)。

@ -25,7 +25,7 @@ Model | Pre-Train Method | Pre-Train Data | Finetune Data | Size | Descriptions
[Wav2vec2-large-960h-lv60-self Model](https://paddlespeech.bj.bcebos.com/wav2vec/wav2vec2-large-960h-lv60-self.pdparams) | wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | - | 1.18 GB |Pre-trained Wav2vec2.0 Model | - | - | - |
[Wav2vec2ASR-large-960h-librispeech Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr3/wav2vec2ASR-large-960h-librispeech_ckpt_1.3.1.model.tar.gz) | wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | Librispeech (960 h) | 718 MB |Encoder: Wav2vec2.0, Decoder: CTC, Decoding method: Greedy search | - | 0.0189 | [Wav2vecASR Librispeech ASR3](../../examples/librispeech/asr3) |
[Wav2vec2-large-wenetspeech-self Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr3/wav2vec2-large-wenetspeech-self_ckpt_1.3.0.model.tar.gz) | wav2vec2 | Wenetspeech Dataset (1w h) | - | 714 MB |Pre-trained Wav2vec2.0 Model | - | - | - |
[Wav2vec2ASR-large-aishell1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr3/wav2vec2ASR-large-aishell1_ckpt_1.3.0.model.tar.gz) | wav2vec2 | Wenetspeech Dataset (1w h) | aishell1 (train set) | 1.17 GB |Encoder: Wav2vec2.0, Decoder: CTC, Decoding method: Greedy search | 0.0453 | - | - |
[Wav2vec2ASR-large-aishell1 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr3/wav2vec2ASR-large-aishell1_ckpt_1.4.0.model.tar.gz) | wav2vec2 | Wenetspeech Dataset (1w h) | aishell1 (train set) | 1.17 GB |Encoder: Wav2vec2.0, Decoder: CTC, Decoding method: Greedy search | 0.0453 | - | - |
### Whisper Model
Demo Link | Training Data | Size | Descriptions | CER | Model

@ -164,8 +164,8 @@ using the `tar` scripts to unpack the model and then you can use the script to t
For example:
```bash
wget https://paddlespeech.bj.bcebos.com/s2t/aishell/asr3/wav2vec2ASR-large-aishell1_ckpt_1.3.0.model.tar.gz
tar xzvf wav2vec2ASR-large-aishell1_ckpt_1.3.0.model.tar.gz
wget https://paddlespeech.bj.bcebos.com/s2t/aishell/asr3/wav2vec2ASR-large-aishell1_ckpt_1.4.0.model.tar.gz
tar xzvf wav2vec2ASR-large-aishell1_ckpt_1.4.0.model.tar.gz
source path.sh
# If you have process the data and get the manifest file you can skip the following 2 steps
bash local/data.sh --stage -1 --stop_stage -1
@ -185,8 +185,8 @@ In some situations, you want to use the trained model to do the inference for th
```
you can train the model by yourself using ```bash run.sh --stage 0 --stop_stage 3```, or you can download the pretrained model through the script below:
```bash
wget https://paddlespeech.bj.bcebos.com/s2t/aishell/asr3/wav2vec2ASR-large-aishell1_ckpt_1.3.0.model.tar.gz
tar xzvf wav2vec2ASR-large-aishell1_ckpt_1.3.0.model.tar.gz
wget https://paddlespeech.bj.bcebos.com/s2t/aishell/asr3/wav2vec2ASR-large-aishell1_ckpt_1.4.0.model.tar.gz
tar xzvf wav2vec2ASR-large-aishell1_ckpt_1.4.0.model.tar.gz
```
You can download the audio demo:
```bash

Loading…
Cancel
Save