pull/3242/head
jiamingkong 2 years ago
parent 3b6651ba7c
commit 60bd7f202e

@ -1,5 +1,5 @@
# Hubert2ASR with Librispeech
This example contains code used to finetune [hubert](https://arxiv.org/abs/2106.07447) model with [Librispeech dataset](http://www.openslr.org/resources/12)
# WavLM2ASR with Librispeech
This example contains code used to finetune [WavLM](https://arxiv.org/abs/2110.13900) model with [Librispeech dataset](http://www.openslr.org/resources/12)
## Overview
All the scripts you need are in `run.sh`. There are several stages in `run.sh`, and each stage has its function.
| Stage | Function |
@ -42,7 +42,7 @@ Some local variables are set in `run.sh`.
`conf_path` denotes the config path of the model.
`avg_num` denotes the number K of top-K models you want to average to get the final model.
`audio file` denotes the file path of the single file you want to infer in stage 5
`ckpt` denotes the checkpoint prefix of the model, e.g. "hubertASR"
`ckpt` denotes the checkpoint prefix of the model, e.g. "WavLMASR"
You can set the local variables (except `ckpt`) when you use `run.sh`
@ -89,10 +89,10 @@ data/
`-- train.meta
```
Stage 0 also downloads the pre-trained [hubert](https://paddlespeech.bj.bcebos.com/hubert/hubert-large-lv60.pdparams) model.
Stage 0 also downloads the pre-trained [wavlm](https://paddlespeech.bj.bcebos.com/wavlm/wavlm-base-plus.pdparams) model.
```bash
mkdir -p exp/hubert
wget -P exp/hubert https://paddlespeech.bj.bcebos.com/hubert/hubert-large-lv60.pdparams
mkdir -p exp/wavlm
wget -P exp/wavlm https://paddlespeech.bj.bcebos.com/wavlm/wavlm-base-plus.pdparams
```
## Stage 1: Model Training
If you want to train the model. you can use stage 1 in `run.sh`. The code is shown below.
@ -111,10 +111,10 @@ or you can run these scripts in the command line (only use CPU).
. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/hubertASR.yaml hubertASR
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/wavlmASR.yaml wavlmASR
```
## Stage 2: Top-k Models Averaging
After training the model, we need to get the final model for testing and inference. In every epoch, the model checkpoint is saved, so we can choose the best model from them based on the validation loss or we can sort them and average the parameters of the top-k models to get the final model. We can use stage 2 to do this, and the code is shown below. Note: We only train one epoch for hubertASR, thus the `avg_num` is set to 1.
After training the model, we need to get the final model for testing and inference. In every epoch, the model checkpoint is saved, so we can choose the best model from them based on the validation loss or we can sort them and average the parameters of the top-k models to get the final model. We can use stage 2 to do this, and the code is shown below. Note: We only train one epoch for wavlmASR, thus the `avg_num` is set to 1.
```bash
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# avg n best model
@ -132,8 +132,8 @@ or you can run these scripts in the command line (only use CPU).
. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/hubertASR.yaml hubertASR
avg.sh best exp/hubertASR/checkpoints 1
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/wavlmASR.yaml wavlmASR
avg.sh best exp/wavlmASR/checkpoints 1
```
## Stage 3: Model Testing
The test stage is to evaluate the model performance. The code of test stage is shown below:
@ -152,24 +152,24 @@ or you can run these scripts in the command line (only use CPU).
. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/hubertASR.yaml hubertASR
avg.sh best exp/hubertASR/checkpoints 1
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/hubertASR.yaml conf/tuning/decode.yaml exp/hubertASR/checkpoints/avg_1
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/wavlmASR.yaml wavlmASR
avg.sh best exp/wavlmASR/checkpoints 1
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/wavlmASR.yaml conf/tuning/decode.yaml exp/wavlmASR/checkpoints/avg_1
```
## Pretrained Model
You can get the pretrained hubertASR from [this](../../../docs/source/released_model.md).
You can get the pretrained wavlmASR from [this](../../../docs/source/released_model.md).
using the `tar` scripts to unpack the model and then you can use the script to test the model.
For example:
```bash
wget https://paddlespeech.bj.bcebos.com/hubert/hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
tar xzvf hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
wget https://paddlespeech.bj.bcebos.com/wavlm/wavlmASR-base-100h-librispeech_ckpt_1.4.0.model.tar.gz
tar xzvf wavlmASR-base-100h-librispeech_ckpt_1.4.0.model.tar.gz
source path.sh
# If you have process the data and get the manifest file you can skip the following 2 steps
bash local/data.sh --stage -1 --stop_stage -1
bash local/data.sh --stage 2 --stop_stage 2
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/hubertASR.yaml conf/tuning/decode.yaml exp/hubertASR/checkpoints/avg_1
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/wavlmASR.yaml conf/tuning/decode.yaml exp/wavlmASR/checkpoints/avg_1
```
The performance of the released models are shown in [here](./RESULTS.md).
@ -184,8 +184,8 @@ In some situations, you want to use the trained model to do the inference for th
```
you can train the model by yourself using ```bash run.sh --stage 0 --stop_stage 3```, or you can download the pretrained model through the script below:
```bash
wget https://paddlespeech.bj.bcebos.com/hubert/hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
tar xzvf hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
wget https://paddlespeech.bj.bcebos.com/wavlm/wavlmASR-base-100h-librispeech_ckpt_1.4.0.model.tar.gz
tar xzvf wavlmASR-base-100h-librispeech_ckpt_1.4.0.model.tar.gz
```
You can download the audio demo:
```bash
@ -193,5 +193,5 @@ wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/en/demo_002_en.w
```
You need to prepare an audio file or use the audio demo above, please confirm the sample rate of the audio is 16K. You can get the result of the audio demo by running the script below.
```bash
CUDA_VISIBLE_DEVICES= ./local/test_wav.sh conf/hubertASR.yaml conf/tuning/decode.yaml exp/hubertASR/checkpoints/avg_1 data/demo_002_en.wav
CUDA_VISIBLE_DEVICES= ./local/test_wav.sh conf/wavlmASR.yaml conf/tuning/decode.yaml exp/wavlmASR/checkpoints/avg_1 data/demo_002_en.wav
```

@ -1,9 +1,9 @@
# LibriSpeech
## hubertASR
## WavLMASR
Fintuning on train-clean-100
train: Epoch 3, 1*V100-32G, batchsize: 4, accum_grad: 8
train: Epoch 16, 4*A800-80G, batchsize: 16, accum_grad: 8
| Model | Params | Config | Augmentation| Test set | Decode method | WER |
| --- | --- | --- | --- | --- | --- | --- |
| hubertASR | 326.16M | conf/hubertASR.yaml | spec_aug | test-clean | greedy search | 0.05868 |
| WavLMASR | 326.16M | conf/wavlmasr.yaml | spec_aug | test-clean | greedy search | 0.0561 |

@ -1,18 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlespeech.dataset.s2t import avg_ckpts_main
if __name__ == '__main__':
avg_ckpts_main()

@ -18,51 +18,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.wavlm.model import WavLMASRTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
# from paddlespeech.utils.argparse import print_arguments
import distutils.util
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def print_arguments(args, info=None):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
filename = ""
if info:
filename = info["__file__"]
filename = os.path.basename(filename)
print(f"----------- {filename} Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("-----------------------------------------------------------")
from paddlespeech.utils.argparse import print_arguments, add_arguments
def main_sp(config, args):

@ -19,53 +19,7 @@ from yacs.config import CfgNode
from paddlespeech.s2t.exps.wavlm.model import WavLMASRTrainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser
# from paddlespeech.utils.argparse import print_arguments
import distutils.util
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def print_arguments(args, info=None):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
filename = ""
if info:
filename = info["__file__"]
filename = os.path.basename(filename)
print(f"----------- {filename} Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("-----------------------------------------------------------")
from paddlespeech.utils.argparse import print_arguments, add_arguments
def main_sp(config, args):

@ -1,251 +0,0 @@
# Copyright (c) 2023 speechbrain Authors. All Rights Reserved.
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from speechbrain 2023 (https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/processing/signal_processing.py)
"""
Low level signal processing utilities
Authors
* Peter Plantinga 2020
* Francois Grondin 2020
* William Aris 2020
* Samuele Cornell 2020
* Sarthak Yadav 2022
"""
import numpy as np
import paddle
def blackman_window(window_length, periodic=True):
"""Blackman window function.
Arguments
---------
window_length : int
Controlling the returned window size.
periodic : bool
Determines whether the returned window trims off the
last duplicate value from the symmetric window
Returns
-------
A 1-D tensor of size (window_length) containing the window
"""
if window_length == 0:
return []
if window_length == 1:
return paddle.ones([1])
if periodic:
window_length += 1
window = paddle.arange(window_length) * (np.pi / (window_length - 1))
window = 0.08 * paddle.cos(window * 4) - 0.5 * paddle.cos(window * 2) + 0.42
return window[:-1] if periodic else window
def compute_amplitude(waveforms, lengths=None, amp_type="avg", scale="linear"):
"""Compute amplitude of a batch of waveforms.
Arguments
---------
waveform : tensor
The waveforms used for computing amplitude.
Shape should be `[time]` or `[batch, time]` or
`[batch, time, channels]`.
lengths : tensor
The lengths of the waveforms excluding the padding.
Shape should be a single dimension, `[batch]`.
amp_type : str
Whether to compute "avg" average or "peak" amplitude.
Choose between ["avg", "peak"].
scale : str
Whether to compute amplitude in "dB" or "linear" scale.
Choose between ["linear", "dB"].
Returns
-------
The average amplitude of the waveforms.
Example
-------
>>> signal = paddle.sin(paddle.arange(16000.0)).unsqueeze(0)
>>> compute_amplitude(signal, signal.size(1))
tensor([[0.6366]])
"""
if len(waveforms.shape) == 1:
waveforms = waveforms.unsqueeze(0)
assert amp_type in ["avg", "peak"]
assert scale in ["linear", "dB"]
if amp_type == "avg":
if lengths is None:
out = paddle.mean(paddle.abs(waveforms), axis=1, keepdim=True)
else:
wav_sum = paddle.sum(paddle.abs(waveforms), axis=1, keepdim=True)
out = wav_sum / lengths
elif amp_type == "peak":
out = paddle.max(paddle.abs(waveforms), axis=1, keepdim=True)[0]
else:
raise NotImplementedError
if scale == "linear":
return out
elif scale == "dB":
return paddle.clip(20 * paddle.log10(out), min=-80) # clamp zeros
else:
raise NotImplementedError
def convolve1d(
waveform,
kernel,
padding=0,
pad_type="constant",
stride=1,
groups=1,
use_fft=False,
rotation_index=0, ):
"""Use paddle.nn.functional to perform 1d padding and conv.
Arguments
---------
waveform : tensor
The tensor to perform operations on.
kernel : tensor
The filter to apply during convolution.
padding : int or tuple
The padding (pad_left, pad_right) to apply.
If an integer is passed instead, this is passed
to the conv1d function and pad_type is ignored.
pad_type : str
The type of padding to use. Passed directly to
`paddle.nn.functional.pad`, see Paddle documentation
for available options.
stride : int
The number of units to move each time convolution is applied.
Passed to conv1d. Has no effect if `use_fft` is True.
groups : int
This option is passed to `conv1d` to split the input into groups for
convolution. Input channels should be divisible by the number of groups.
use_fft : bool
When `use_fft` is passed `True`, then compute the convolution in the
spectral domain using complex multiply. This is more efficient on CPU
when the size of the kernel is large (e.g. reverberation). WARNING:
Without padding, circular convolution occurs. This makes little
difference in the case of reverberation, but may make more difference
with different kernels.
rotation_index : int
This option only applies if `use_fft` is true. If so, the kernel is
rolled by this amount before convolution to shift the output location.
Returns
-------
The convolved waveform.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> signal = signal.unsqueeze(0).unsqueeze(2)
>>> kernel = paddle.rand([1, 10, 1])
>>> signal = convolve1d(signal, kernel, padding=(9, 0))
"""
if len(waveform.shape) != 3:
raise ValueError("Convolve1D expects a 3-dimensional tensor")
# Move time dimension last, which pad and fft and conv expect.
waveform = waveform.transpose([0, 2, 1])
kernel = kernel.transpose([0, 2, 1])
# Padding can be a tuple (left_pad, right_pad) or an int
if isinstance(padding, tuple):
waveform = paddle.nn.functional.pad(
x=waveform, pad=padding, mode=pad_type, data_format='NCL')
# This approach uses FFT, which is more efficient if the kernel is large
if use_fft:
# Pad kernel to same length as signal, ensuring correct alignment
zero_length = waveform.shape[-1] - kernel.shape[-1]
# Handle case where signal is shorter
if zero_length < 0:
kernel = kernel[..., :zero_length]
zero_length = 0
# Perform rotation to ensure alignment
zeros = paddle.zeros(
[kernel.shape[0], kernel.shape[1], zero_length], dtype=kernel.dtype)
after_index = kernel[..., rotation_index:]
before_index = kernel[..., :rotation_index]
kernel = paddle.concat((after_index, zeros, before_index), axis=-1)
# Multiply in frequency domain to convolve in time domain
import paddle.fft as fft
result = fft.rfft(waveform) * fft.rfft(kernel)
convolved = fft.irfft(result, n=waveform.shape[-1])
# Use the implementation given by paddle, which should be efficient on GPU
else:
convolved = paddle.nn.functional.conv1d(
x=waveform,
weight=kernel,
stride=stride,
groups=groups,
padding=padding if not isinstance(padding, tuple) else 0, )
# Return time dimension to the second dimension.
return convolved.transpose([0, 2, 1])
def notch_filter(notch_freq, filter_width=101, notch_width=0.05):
"""Returns a notch filter constructed from a high-pass and low-pass filter.
(from https://tomroelandts.com/articles/
how-to-create-simple-band-pass-and-band-reject-filters)
Arguments
---------
notch_freq : float
frequency to put notch as a fraction of the
sampling rate / 2. The range of possible inputs is 0 to 1.
filter_width : int
Filter width in samples. Longer filters have
smaller transition bands, but are more inefficient.
notch_width : float
Width of the notch, as a fraction of the sampling_rate / 2.
"""
# Check inputs
assert 0 < notch_freq <= 1
assert filter_width % 2 != 0
pad = filter_width // 2
inputs = paddle.arange(filter_width) - pad
# Avoid frequencies that are too low
notch_freq += notch_width
# Define sinc function, avoiding division by zero
def sinc(x):
"Computes the sinc function."
def _sinc(x):
return paddle.sin(x) / x
# The zero is at the middle index
return paddle.concat(
[_sinc(x[:pad]), paddle.ones([1]), _sinc(x[pad + 1:])])
# Compute a low-pass filter with cutoff frequency notch_freq.
hlpf = sinc(3 * (notch_freq - notch_width) * inputs)
hlpf *= blackman_window(filter_width)
hlpf /= paddle.sum(hlpf)
# Compute a high-pass filter with cutoff frequency notch_freq.
hhpf = sinc(3 * (notch_freq + notch_width) * inputs)
hhpf *= blackman_window(filter_width)
hhpf /= -paddle.sum(hhpf)
hhpf[pad] += 1
# Adding filters creates notch filter
return (hlpf + hhpf).view(1, -1, 1)

@ -1,901 +0,0 @@
# Copyright (c) 2023 speechbrain Authors. All Rights Reserved.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from speechbrain(https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/processing/speech_augmentation.py)
"""Classes for mutating speech data for data augmentation.
This module provides classes that produce realistic distortions of speech
data for the purpose of training speech processing models. The list of
distortions includes adding noise, adding reverberation, changing speed,
and more. All the classes are of type `torch.nn.Module`. This gives the
possibility to have end-to-end differentiability and
backpropagate the gradient through them. In addition, all operations
are expected to be performed on the GPU (where available) for efficiency.
Authors
* Peter Plantinga 2020
"""
import math
import paddle
import paddle.nn as nn
from .signal_processing import compute_amplitude
from .signal_processing import convolve1d
from .signal_processing import notch_filter
class SpeedPerturb(nn.Layer):
"""Slightly speed up or slow down an audio signal.
Resample the audio signal at a rate that is similar to the original rate,
to achieve a slightly slower or slightly faster signal. This technique is
outlined in the paper: "Audio Augmentation for Speech Recognition"
Arguments
---------
orig_freq : int
The frequency of the original signal.
speeds : list
The speeds that the signal should be changed to, as a percentage of the
original signal (i.e. `speeds` is divided by 100 to get a ratio).
perturb_prob : float
The chance that the batch will be speed-
perturbed. By default, every batch is perturbed.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> perturbator = SpeedPerturb(orig_freq=16000, speeds=[90])
>>> clean = signal.unsqueeze(0)
>>> perturbed = perturbator(clean)
>>> clean.shape
paddle.shape([1, 52173])
>>> perturbed.shape
paddle.shape([1, 46956])
"""
def __init__(
self,
orig_freq,
speeds=[90, 100, 110],
perturb_prob=1.0, ):
super().__init__()
self.orig_freq = orig_freq
self.speeds = speeds
self.perturb_prob = perturb_prob
# Initialize index of perturbation
self.samp_index = 0
# Initialize resamplers
self.resamplers = []
for speed in self.speeds:
config = {
"orig_freq": self.orig_freq,
"new_freq": self.orig_freq * speed // 100,
}
self.resamplers.append(Resample(**config))
def forward(self, waveform):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
# Don't perturb (return early) 1-`perturb_prob` portion of the batches
if paddle.rand([1]) > self.perturb_prob:
return waveform.clone()
# Perform a random perturbation
self.samp_index = paddle.randint(len(self.speeds), shape=(1, ))[0]
perturbed_waveform = self.resamplers[self.samp_index](waveform)
return perturbed_waveform
class Resample(nn.Layer):
"""This class resamples an audio signal using sinc-based interpolation.
It is a modification of the `resample` function from torchaudio
(https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html)
Arguments
---------
orig_freq : int
the sampling frequency of the input signal.
new_freq : int
the new sampling frequency after this operation is performed.
lowpass_filter_width : int
Controls the sharpness of the filter, larger numbers result in a
sharper filter, but they are less efficient. Values from 4 to 10 are allowed.
"""
def __init__(
self,
orig_freq=16000,
new_freq=16000,
lowpass_filter_width=6, ):
super().__init__()
self.orig_freq = orig_freq
self.new_freq = new_freq
self.lowpass_filter_width = lowpass_filter_width
# Compute rate for striding
self._compute_strides()
assert self.orig_freq % self.conv_stride == 0
assert self.new_freq % self.conv_transpose_stride == 0
def _compute_strides(self):
"""Compute the phases in polyphase filter.
(almost directly from torchaudio.compliance.kaldi)
"""
# Compute new unit based on ratio of in/out frequencies
base_freq = math.gcd(self.orig_freq, self.new_freq)
input_samples_in_unit = self.orig_freq // base_freq
self.output_samples = self.new_freq // base_freq
# Store the appropriate stride based on the new units
self.conv_stride = input_samples_in_unit
self.conv_transpose_stride = self.output_samples
def forward(self, waveforms):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
if not hasattr(self, "first_indices"):
self._indices_and_weights(waveforms)
# Don't do anything if the frequencies are the same
if self.orig_freq == self.new_freq:
return waveforms
unsqueezed = False
if len(waveforms.shape) == 2:
waveforms = waveforms.unsqueeze(1)
unsqueezed = True
elif len(waveforms.shape) == 3:
waveforms = waveforms.transpose([0, 2, 1])
else:
raise ValueError("Input must be 2 or 3 dimensions")
# Do resampling
resampled_waveform = self._perform_resample(waveforms)
if unsqueezed:
resampled_waveform = resampled_waveform.squeeze(1)
else:
resampled_waveform = resampled_waveform.transpose([0, 2, 1])
return resampled_waveform
def _perform_resample(self, waveforms):
"""Resamples the waveform at the new frequency.
This matches Kaldi's OfflineFeatureTpl ResampleWaveform which uses a
LinearResample (resample a signal at linearly spaced intervals to
up/downsample a signal). LinearResample (LR) means that the output
signal is at linearly spaced intervals (i.e the output signal has a
frequency of `new_freq`). It uses sinc/bandlimited interpolation to
upsample/downsample the signal.
(almost directly from torchaudio.compliance.kaldi)
https://ccrma.stanford.edu/~jos/resample/
Theory_Ideal_Bandlimited_Interpolation.html
https://github.com/kaldi-asr/kaldi/blob/master/src/feat/resample.h#L56
Arguments
---------
waveforms : tensor
The batch of audio signals to resample.
Returns
-------
The waveforms at the new frequency.
"""
# Compute output size and initialize
batch_size, num_channels, wave_len = waveforms.shape
window_size = self.weights.shape[1]
tot_output_samp = self._output_samples(wave_len)
resampled_waveform = paddle.zeros(
(batch_size, num_channels, tot_output_samp))
# self.weights = self.weights.to(waveforms.device)
# Check weights are on correct device
# if waveforms.device != self.weights.device:
# self.weights = self.weights.to(waveforms.device)
# eye size: (num_channels, num_channels, 1)
eye = paddle.eye(num_channels).unsqueeze(2)
# Iterate over the phases in the polyphase filter
for i in range(self.first_indices.shape[0]):
wave_to_conv = waveforms
first_index = int(self.first_indices[i].item())
if first_index >= 0:
# trim the signal as the filter will not be applied
# before the first_index
wave_to_conv = wave_to_conv[..., first_index:]
# pad the right of the signal to allow partial convolutions
# meaning compute values for partial windows (e.g. end of the
# window is outside the signal length)
max_index = (tot_output_samp - 1) // self.output_samples
end_index = max_index * self.conv_stride + window_size
current_wave_len = wave_len - first_index
right_padding = max(0, end_index + 1 - current_wave_len)
left_padding = max(0, -first_index)
wave_to_conv = paddle.nn.functional.pad(
wave_to_conv, (left_padding, right_padding), data_format='NCL')
conv_wave = paddle.nn.functional.conv1d(
x=wave_to_conv,
weight=self.weights[i].repeat(num_channels, 1, 1),
stride=self.conv_stride,
groups=num_channels, )
# we want conv_wave[:, i] to be at
# output[:, i + n*conv_transpose_stride]
dilated_conv_wave = paddle.nn.functional.conv1d_transpose(
conv_wave, eye, stride=self.conv_transpose_stride)
# pad dilated_conv_wave so it reaches the output length if needed.
left_padding = i
previous_padding = left_padding + dilated_conv_wave.shape[-1]
right_padding = max(0, tot_output_samp - previous_padding)
dilated_conv_wave = paddle.nn.functional.pad(
dilated_conv_wave, (left_padding, right_padding),
data_format='NCL')
dilated_conv_wave = dilated_conv_wave[..., :tot_output_samp]
resampled_waveform += dilated_conv_wave
return resampled_waveform
def _output_samples(self, input_num_samp):
"""Based on LinearResample::GetNumOutputSamples.
LinearResample (LR) means that the output signal is at
linearly spaced intervals (i.e the output signal has a
frequency of ``new_freq``). It uses sinc/bandlimited
interpolation to upsample/downsample the signal.
(almost directly from torchaudio.compliance.kaldi)
Arguments
---------
input_num_samp : int
The number of samples in each example in the batch.
Returns
-------
Number of samples in the output waveform.
"""
# For exact computation, we measure time in "ticks" of 1.0 / tick_freq,
# where tick_freq is the least common multiple of samp_in and
# samp_out.
samp_in = int(self.orig_freq)
samp_out = int(self.new_freq)
tick_freq = abs(samp_in * samp_out) // math.gcd(samp_in, samp_out)
ticks_per_input_period = tick_freq // samp_in
# work out the number of ticks in the time interval
# [ 0, input_num_samp/samp_in ).
interval_length = input_num_samp * ticks_per_input_period
if interval_length <= 0:
return 0
ticks_per_output_period = tick_freq // samp_out
# Get the last output-sample in the closed interval,
# i.e. replacing [ ) with [ ]. Note: integer division rounds down.
# See http://en.wikipedia.org/wiki/Interval_(mathematics) for an
# explanation of the notation.
last_output_samp = interval_length // ticks_per_output_period
# We need the last output-sample in the open interval, so if it
# takes us to the end of the interval exactly, subtract one.
if last_output_samp * ticks_per_output_period == interval_length:
last_output_samp -= 1
# First output-sample index is zero, so the number of output samples
# is the last output-sample plus one.
num_output_samp = last_output_samp + 1
return num_output_samp
def _indices_and_weights(self, waveforms):
"""Based on LinearResample::SetIndexesAndWeights
Retrieves the weights for resampling as well as the indices in which
they are valid. LinearResample (LR) means that the output signal is at
linearly spaced intervals (i.e the output signal has a frequency
of ``new_freq``). It uses sinc/bandlimited interpolation to
upsample/downsample the signal.
Returns
-------
- the place where each filter should start being applied
- the filters to be applied to the signal for resampling
"""
# Lowpass filter frequency depends on smaller of two frequencies
min_freq = min(self.orig_freq, self.new_freq)
lowpass_cutoff = 0.99 * 0.5 * min_freq
assert lowpass_cutoff * 2 <= min_freq
window_width = self.lowpass_filter_width / (2.0 * lowpass_cutoff)
assert lowpass_cutoff < min(self.orig_freq, self.new_freq) / 2
output_t = paddle.arange(start=0.0, end=self.output_samples)
output_t /= self.new_freq
min_t = output_t - window_width
max_t = output_t + window_width
min_input_index = paddle.ceil(min_t * self.orig_freq)
max_input_index = paddle.floor(max_t * self.orig_freq)
num_indices = max_input_index - min_input_index + 1
max_weight_width = num_indices.max()
j = paddle.arange(max_weight_width)
input_index = min_input_index.unsqueeze(1) + j.unsqueeze(0)
delta_t = (input_index / self.orig_freq) - output_t.unsqueeze(1)
weights = paddle.zeros_like(delta_t)
inside_window_indices = delta_t.abs() < (window_width)
# raised-cosine (Hanning) window with width `window_width`
weights[inside_window_indices] = 0.5 * (1 + paddle.cos(
2 * math.pi * lowpass_cutoff / self.lowpass_filter_width *
delta_t[inside_window_indices]))
t_eq_zero_indices = delta_t == 0.0
t_not_eq_zero_indices = ~t_eq_zero_indices
# sinc filter function
weights[t_not_eq_zero_indices] *= paddle.sin(
2 * math.pi * lowpass_cutoff * delta_t[t_not_eq_zero_indices]) / (
math.pi * delta_t[t_not_eq_zero_indices])
# limit of the function at t = 0
weights[t_eq_zero_indices] *= 2 * lowpass_cutoff
# size (output_samples, max_weight_width)
weights /= self.orig_freq
self.first_indices = min_input_index
self.weights = weights
class DropFreq(nn.Layer):
"""This class drops a random frequency from the signal.
The purpose of this class is to teach models to learn to rely on all parts
of the signal, not just a few frequency bands.
Arguments
---------
drop_freq_low : float
The low end of frequencies that can be dropped,
as a fraction of the sampling rate / 2.
drop_freq_high : float
The high end of frequencies that can be
dropped, as a fraction of the sampling rate / 2.
drop_count_low : int
The low end of number of frequencies that could be dropped.
drop_count_high : int
The high end of number of frequencies that could be dropped.
drop_width : float
The width of the frequency band to drop, as
a fraction of the sampling_rate / 2.
drop_prob : float
The probability that the batch of signals will have a frequency
dropped. By default, every batch has frequencies dropped.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> dropper = DropFreq()
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> dropped_signal = dropper(signal.unsqueeze(0))
"""
def __init__(
self,
drop_freq_low=1e-14,
drop_freq_high=1,
drop_count_low=1,
drop_count_high=2,
drop_width=0.05,
drop_prob=1, ):
super().__init__()
self.drop_freq_low = drop_freq_low
self.drop_freq_high = drop_freq_high
self.drop_count_low = drop_count_low
self.drop_count_high = drop_count_high
self.drop_width = drop_width
self.drop_prob = drop_prob
def forward(self, waveforms):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
# Don't drop (return early) 1-`drop_prob` portion of the batches
dropped_waveform = waveforms.clone()
if paddle.rand([1]) > self.drop_prob:
return dropped_waveform
# Add channels dimension
if len(waveforms.shape) == 2:
dropped_waveform = dropped_waveform.unsqueeze(-1)
# Pick number of frequencies to drop
drop_count = paddle.randint(
low=self.drop_count_low,
high=self.drop_count_high + 1,
shape=(1, ), )
# Filter parameters
filter_length = 101
pad = filter_length // 2
# Start with delta function
drop_filter = paddle.zeros([1, filter_length, 1])
drop_filter[0, pad, 0] = 1
if drop_count.shape == 0:
# Pick a frequency to drop
drop_range = self.drop_freq_high - self.drop_freq_low
drop_frequency = (
paddle.rand(drop_count) * drop_range + self.drop_freq_low)
# Subtract each frequency
for frequency in drop_frequency:
notch_kernel = notch_filter(
frequency,
filter_length,
self.drop_width, )
drop_filter = convolve1d(drop_filter, notch_kernel, pad)
# Apply filter
dropped_waveform = convolve1d(dropped_waveform, drop_filter, pad)
# Remove channels dimension if added
return dropped_waveform.squeeze(-1)
class DropChunk(nn.Layer):
"""This class drops portions of the input signal.
Using `DropChunk` as an augmentation strategy helps a models learn to rely
on all parts of the signal, since it can't expect a given part to be
present.
Arguments
---------
drop_length_low : int
The low end of lengths for which to set the
signal to zero, in samples.
drop_length_high : int
The high end of lengths for which to set the
signal to zero, in samples.
drop_count_low : int
The low end of number of times that the signal
can be dropped to zero.
drop_count_high : int
The high end of number of times that the signal
can be dropped to zero.
drop_start : int
The first index for which dropping will be allowed.
drop_end : int
The last index for which dropping will be allowed.
drop_prob : float
The probability that the batch of signals will
have a portion dropped. By default, every batch
has portions dropped.
noise_factor : float
The factor relative to average amplitude of an utterance
to use for scaling the white noise inserted. 1 keeps
the average amplitude the same, while 0 inserts all 0's.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> dropper = DropChunk(drop_start=100, drop_end=200, noise_factor=0.)
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> signal = signal.unsqueeze(0) # [batch, time, channels]
>>> length = paddle.ones([1])
>>> dropped_signal = dropper(signal, length)
>>> float(dropped_signal[:, 150])
0.0
"""
def __init__(
self,
drop_length_low=100,
drop_length_high=1000,
drop_count_low=1,
drop_count_high=10,
drop_start=0,
drop_end=None,
drop_prob=1,
noise_factor=0.0, ):
super().__init__()
self.drop_length_low = drop_length_low
self.drop_length_high = drop_length_high
self.drop_count_low = drop_count_low
self.drop_count_high = drop_count_high
self.drop_start = drop_start
self.drop_end = drop_end
self.drop_prob = drop_prob
self.noise_factor = noise_factor
# Validate low < high
if drop_length_low > drop_length_high:
raise ValueError("Low limit must not be more than high limit")
if drop_count_low > drop_count_high:
raise ValueError("Low limit must not be more than high limit")
# Make sure the length doesn't exceed end - start
if drop_end is not None and drop_end >= 0:
if drop_start > drop_end:
raise ValueError("Low limit must not be more than high limit")
drop_range = drop_end - drop_start
self.drop_length_low = min(drop_length_low, drop_range)
self.drop_length_high = min(drop_length_high, drop_range)
def forward(self, waveforms, lengths):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or
`[batch, time, channels]`
"""
# Reading input list
lengths = (lengths * waveforms.shape[1]).long()
batch_size = waveforms.shape[0]
dropped_waveform = waveforms.clone()
# Don't drop (return early) 1-`drop_prob` portion of the batches
if paddle.rand([1]) > self.drop_prob:
return dropped_waveform
# Store original amplitude for computing white noise amplitude
clean_amplitude = compute_amplitude(waveforms, lengths.unsqueeze(1))
# Pick a number of times to drop
drop_times = paddle.randint(
low=self.drop_count_low,
high=self.drop_count_high + 1,
shape=(batch_size, ), )
# Iterate batch to set mask
for i in range(batch_size):
if drop_times[i] == 0:
continue
# Pick lengths
length = paddle.randint(
low=self.drop_length_low,
high=self.drop_length_high + 1,
shape=(drop_times[i], ), )
# Compute range of starting locations
start_min = self.drop_start
if start_min < 0:
start_min += lengths[i]
start_max = self.drop_end
if start_max is None:
start_max = lengths[i]
if start_max < 0:
start_max += lengths[i]
start_max = max(0, start_max - length.max())
# Pick starting locations
start = paddle.randint(
low=start_min,
high=start_max + 1,
shape=(drop_times[i], ), )
end = start + length
# Update waveform
if not self.noise_factor:
for j in range(drop_times[i]):
dropped_waveform[i, start[j]:end[j]] = 0.0
else:
# Uniform distribution of -2 to +2 * avg amplitude should
# preserve the average for normalization
noise_max = 2 * clean_amplitude[i] * self.noise_factor
for j in range(drop_times[i]):
# zero-center the noise distribution
noise_vec = paddle.rand([length[j]])
noise_vec = 2 * noise_max * noise_vec - noise_max
dropped_waveform[i, start[j]:end[j]] = noise_vec
return dropped_waveform
class SpecAugment(paddle.nn.Layer):
"""An implementation of the SpecAugment algorithm.
Reference:
https://arxiv.org/abs/1904.08779
Arguments
---------
time_warp : bool
Whether applying time warping.
time_warp_window : int
Time warp window.
time_warp_mode : str
Interpolation mode for time warping (default "bicubic").
freq_mask : bool
Whether applying freq mask.
freq_mask_width : int or tuple
Freq mask width range.
n_freq_mask : int
Number of freq mask.
time_mask : bool
Whether applying time mask.
time_mask_width : int or tuple
Time mask width range.
n_time_mask : int
Number of time mask.
replace_with_zero : bool
If True, replace masked value with 0, else replace masked value with mean of the input tensor.
Example
-------
>>> aug = SpecAugment()
>>> a = paddle.rand([8, 120, 80])
>>> a = aug(a)
>>> print(a.shape)
paddle.Size([8, 120, 80])
"""
def __init__(
self,
time_warp=True,
time_warp_window=5,
time_warp_mode="bicubic",
freq_mask=True,
freq_mask_width=(0, 20),
n_freq_mask=2,
time_mask=True,
time_mask_width=(0, 100),
n_time_mask=2,
replace_with_zero=True, ):
super().__init__()
assert (
time_warp or freq_mask or time_mask
), "at least one of time_warp, time_mask, or freq_mask should be applied"
self.apply_time_warp = time_warp
self.time_warp_window = time_warp_window
self.time_warp_mode = time_warp_mode
self.freq_mask = freq_mask
if isinstance(freq_mask_width, int):
freq_mask_width = (0, freq_mask_width)
self.freq_mask_width = freq_mask_width
self.n_freq_mask = n_freq_mask
self.time_mask = time_mask
if isinstance(time_mask_width, int):
time_mask_width = (0, time_mask_width)
self.time_mask_width = time_mask_width
self.n_time_mask = n_time_mask
self.replace_with_zero = replace_with_zero
def forward(self, x):
"""Takes in input a tensors and returns an augmented one."""
if self.apply_time_warp:
x = self.time_warp(x)
if self.freq_mask:
x = self.mask_along_axis(x, dim=2)
if self.time_mask:
x = self.mask_along_axis(x, dim=1)
return x
def time_warp(self, x):
"""Time warping with paddle.nn.functional.interpolate"""
original_size = x.shape
window = self.time_warp_window
# 2d interpolation requires 4D or higher dimension tensors
# x: (Batch, Time, Freq) -> (Batch, 1, Time, Freq)
if x.dim() == 3:
x = x.unsqueeze(1)
time = x.shape[2]
if time - window <= window:
return x.view(*original_size)
# compute center and corresponding window
c = paddle.randint(window, time - window, (1, ))[0]
w = paddle.randint(c - window, c + window, (1, ))[0] + 1
left = paddle.nn.functional.interpolate(
x[:, :, :c],
(w, x.shape[3]),
mode=self.time_warp_mode,
align_corners=True, )
right = paddle.nn.functional.interpolate(
x[:, :, c:],
(time - w, x.shape[3]),
mode=self.time_warp_mode,
align_corners=True, )
x[:, :, :w] = left
x[:, :, w:] = right
return x.view(*original_size)
def mask_along_axis(self, x, dim):
"""Mask along time or frequency axis.
Arguments
---------
x : tensor
Input tensor.
dim : int
Corresponding dimension to mask.
"""
original_size = x.shape
if x.dim() == 4:
x = x.view(-1, x.shape[2], x.shape[3])
batch, time, fea = x.shape
if dim == 1:
D = time
n_mask = self.n_time_mask
width_range = self.time_mask_width
else:
D = fea
n_mask = self.n_freq_mask
width_range = self.freq_mask_width
mask_len = paddle.randint(width_range[0], width_range[1],
(batch, n_mask)).unsqueeze(2)
mask_pos = paddle.randint(0, max(1, D - mask_len.max()),
(batch, n_mask)).unsqueeze(2)
# compute masks
arange = paddle.arange(end=D).view(1, 1, -1)
mask = (mask_pos <= arange) * (arange < (mask_pos + mask_len))
mask = mask.any(axis=1)
if dim == 1:
mask = mask.unsqueeze(2)
else:
mask = mask.unsqueeze(1)
if self.replace_with_zero:
val = 0.0
else:
val = x.mean()
# same to x.masked_fill_(mask, val)
y = paddle.full(x.shape, val, x.dtype)
x = paddle.where(mask, y, x)
return x.view(*original_size)
class TimeDomainSpecAugment(nn.Layer):
"""A time-domain approximation of the SpecAugment algorithm.
This augmentation module implements three augmentations in
the time-domain.
1. Drop chunks of the audio (zero amplitude or white noise)
2. Drop frequency bands (with band-drop filters)
3. Speed peturbation (via resampling to slightly different rate)
Arguments
---------
perturb_prob : float from 0 to 1
The probability that a batch will have speed perturbation applied.
drop_freq_prob : float from 0 to 1
The probability that a batch will have frequencies dropped.
drop_chunk_prob : float from 0 to 1
The probability that a batch will have chunks dropped.
speeds : list of ints
A set of different speeds to use to perturb each batch.
See ``speechbrain.processing.speech_augmentation.SpeedPerturb``
sample_rate : int
Sampling rate of the input waveforms.
drop_freq_count_low : int
Lowest number of frequencies that could be dropped.
drop_freq_count_high : int
Highest number of frequencies that could be dropped.
drop_chunk_count_low : int
Lowest number of chunks that could be dropped.
drop_chunk_count_high : int
Highest number of chunks that could be dropped.
drop_chunk_length_low : int
Lowest length of chunks that could be dropped.
drop_chunk_length_high : int
Highest length of chunks that could be dropped.
drop_chunk_noise_factor : float
The noise factor used to scale the white noise inserted, relative to
the average amplitude of the utterance. Default 0 (no noise inserted).
Example
-------
>>> inputs = paddle.randn([10, 16000])
>>> feature_maker = TimeDomainSpecAugment(speeds=[80])
>>> feats = feature_maker(inputs, paddle.ones(10))
>>> feats.shape
paddle.shape([10, 12800])
"""
def __init__(
self,
perturb_prob=1.0,
drop_freq_prob=1.0,
drop_chunk_prob=1.0,
speeds=[95, 100, 105],
sample_rate=16000,
drop_freq_count_low=0,
drop_freq_count_high=3,
drop_chunk_count_low=0,
drop_chunk_count_high=5,
drop_chunk_length_low=1000,
drop_chunk_length_high=2000,
drop_chunk_noise_factor=0, ):
super().__init__()
self.speed_perturb = SpeedPerturb(
perturb_prob=perturb_prob, orig_freq=sample_rate, speeds=speeds)
self.drop_freq = DropFreq(
drop_prob=drop_freq_prob,
drop_count_low=drop_freq_count_low,
drop_count_high=drop_freq_count_high, )
self.drop_chunk = DropChunk(
drop_prob=drop_chunk_prob,
drop_count_low=drop_chunk_count_low,
drop_count_high=drop_chunk_count_high,
drop_length_low=drop_chunk_length_low,
drop_length_high=drop_chunk_length_high,
noise_factor=drop_chunk_noise_factor, )
def forward(self, waveforms, lengths):
"""Returns the distorted waveforms.
Arguments
---------
waveforms : tensor
The waveforms to distort
"""
# Augmentation
with paddle.no_grad():
waveforms = self.speed_perturb(waveforms)
waveforms = self.drop_freq(waveforms)
waveforms = self.drop_chunk(waveforms, lengths)
return waveforms
Loading…
Cancel
Save